Results
All zeros of real cubic equation
Names: c02akf; nagf_zeros_cubic_real
Keywords: cubic polynomial; root-finding
GAMS: F1a1
All zeros of real quartic equation
Names: c02alf; nagf_zeros_quartic_real
Keywords: quartic polynomials; root-finding
GAMS: F1a1
All zeros of complex cubic equation
Names: c02amf; nagf_zeros_cubic_complex
Keywords: cubic polynomial; root-finding
GAMS: F1a2
All zeros of complex quartic equation
Names: c02anf; nagf_zeros_quartic_complex
Keywords: quartic polynomials; root-finding
GAMS: F1a2
Solution of a system of nonlinear equations using Anderson acceleration
Names: c05mbc; nag_zero_nonlin_eqns_aa
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using Anderson acceleration
Names: c05mbf; nagf_roots_sys_func_aa
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using Anderson acceleration (reverse communication)
Names: c05mdc; nag_zero_nonlin_eqns_aa_rcomm
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using Anderson acceleration (reverse communication)
Names: c05mdf; nagf_roots_sys_func_aa_rcomm
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (easy-to-use)
Names: c05qbc; nag_zero_nonlin_eqns_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (easy-to-use)
Names: c05qbf; nagf_roots_sys_func_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (comprehensive)
Names: c05qcc; nag_zero_nonlin_eqns_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (comprehensive)
Names: c05qcf; nagf_roots_sys_func_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (reverse communication)
Names: c05qdc; nag_zero_nonlin_eqns_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (reverse communication)
Names: c05qdf; nagf_roots_sys_func_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a sparse system of nonlinear equations using function values only (easy-to-use)
Names: c05qsc; nag_zero_sparse_nonlin_eqns_easy
Keywords: discretised system; root-finding; sparse nonlinear system; zeros of transcendental functions
GAMS: F2
Solution of a sparse system of nonlinear equations using function values only (easy-to-use)
Names: c05qsf; nagf_roots_sparsys_func_easy
Keywords: discretised system; root-finding; sparse nonlinear system; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (easy-to-use)
Names: c05rbc; nag_zero_nonlin_eqns_deriv_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (easy-to-use)
Names: c05rbf; nagf_roots_sys_deriv_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (comprehensive)
Names: c05rcc; nag_zero_nonlin_eqns_deriv_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (comprehensive)
Names: c05rcf; nagf_roots_sys_deriv_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (reverse communication)
Names: c05rdc; nag_zero_nonlin_eqns_deriv_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (reverse communication)
Names: c05rdf; nagf_roots_sys_deriv_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Single one-dimensional real discrete Fourier transform, extra workspace for greater speed
Names: c06faf; nagf_sum_fft_real_1d_rfmt
Keywords: Fast Fourier Transform; FFT
GAMS: J1a1
Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed
Names: c06fbf; nagf_sum_fft_hermitian_1d_rfmt
Keywords: Fast Fourier Transform; FFT
GAMS: J1a2
Single one-dimensional complex discrete Fourier transform, extra workspace for greater speed
Names: c06fcf; nagf_sum_fft_complex_1d_sep
Keywords: Fast Fourier Transform; FFT
GAMS: J1a2
One-dimensional complex discrete Fourier transform of multidimensional data
Names: c06fff; nagf_sum_fft_complex_multid_1d_sep
Keywords: complex Fourier transform; Fast Fourier Transform; FFT
GAMS: J1a2
Multidimensional complex discrete Fourier transform of multidimensional data
Names: c06fjf; nagf_sum_fft_complex_multid_sep
Keywords: complex Fourier transform; Fast Fourier Transform; FFT
GAMS: J1b
Circular convolution or correlation of two real vectors, no restrictions on n
Names: c06fkc; nag_sum_convcorr_real
Keywords: convolution; correlation; Fast Fourier Transform; FFT
GAMS: D1a10, J2
Circular convolution or correlation of two real vectors, no restrictions on n
Names: c06fkf; nagf_sum_convcorr_real
Keywords: convolution; correlation; Fast Fourier Transform; FFT
GAMS: D1a10, J2
Three-dimensional complex discrete Fourier transform
Names: c06fxf; nagf_sum_fft_complex_3d_sep
Keywords: complex Fourier transform; Fast Fourier Transform; FFT
GAMS: J1b
Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex storage format for Hermitian sequences
Names: c06pac; nag_sum_fft_realherm_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a1
Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex storage format for Hermitian sequences
Names: c06paf; nagf_sum_fft_realherm_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a1
Single one-dimensional complex discrete Fourier transform, complex data type
Names: c06pcc; nag_sum_fft_complex_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Single one-dimensional complex discrete Fourier transform, complex data type
Names: c06pcf; nagf_sum_fft_complex_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
One-dimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pfc; nag_fft_multid_single
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
One-dimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pff; nagf_sum_fft_complex_multid_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Multidimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pjc; nag_fft_multid_full
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Multidimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pjf; nagf_sum_fft_complex_multid
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Circular convolution or correlation of two complex vectors
Names: c06pkf; nagf_sum_convcorr_complex
Keywords: convolution, vectors
GAMS: D1a10, J2
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using row ordered complex storage format for Hermitian sequences
Names: c06ppc; nag_sum_fft_realherm_1d_multi_row
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex; Fourier transforms, real
GAMS: J1a1
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using row ordered complex storage format for Hermitian sequences
Names: c06ppf; nagf_sum_fft_realherm_1d_multi_row
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex; Fourier transforms, real
GAMS: J1a1
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using column ordered complex storage format for Hermitian sequences
Names: c06pqc; nag_sum_fft_realherm_1d_multi_col
Keywords: discrete; Fast Fourier Transform; FFT; one-dimensional
GAMS: J1a1
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using column ordered complex storage format for Hermitian sequences
Names: c06pqf; nagf_sum_fft_realherm_1d_multi_col
Keywords: discrete; Fast Fourier Transform; FFT; one-dimensional
GAMS: J1a1
Multiple one-dimensional complex discrete Fourier transforms using complex data type
Names: c06prf; nagf_sum_fft_complex_1d_multi_row
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Multiple one-dimensional complex discrete Fourier transforms, complex data type
Names: c06psc; nag_sum_fft_complex_1d_multi
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Multiple one-dimensional complex discrete Fourier transforms, complex data type
Names: c06psf; nagf_sum_fft_complex_1d_multi_col
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Two-dimensional complex discrete Fourier transform, complex data type
Names: c06puc; nag_sum_fft_complex_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional complex discrete Fourier transform, complex data type
Names: c06puf; nagf_sum_fft_complex_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional real-to-complex discrete Fourier transform
Names: c06pvc; nag_sum_fft_real_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional real-to-complex discrete Fourier transform
Names: c06pvf; nagf_sum_fft_real_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional complex-to-real discrete Fourier transform
Names: c06pwc; nag_sum_fft_hermitian_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional complex-to-real discrete Fourier transform
Names: c06pwf; nagf_sum_fft_hermitian_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional complex discrete Fourier transform, complex data type
Names: c06pxc; nag_fft_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional complex discrete Fourier transform, complex data type
Names: c06pxf; nagf_sum_fft_complex_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional real-to-complex discrete Fourier transform
Names: c06pyc; nag_sum_fft_real_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional real-to-complex discrete Fourier transform
Names: c06pyf; nagf_sum_fft_real_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional complex-to-real discrete Fourier transform
Names: c06pzc; nag_sum_fft_hermitian_3d
Keywords: Fast Fourier Transform; FFT
GAMS: J1b
Three-dimensional complex-to-real discrete Fourier transform
Names: c06pzf; nagf_sum_fft_hermitian_3d
Keywords: Fast Fourier Transform; FFT
GAMS: J1b
Discrete sine transform (easy-to-use)
Names: c06raf; nagf_sum_fft_real_sine_simple
Keywords: sine transform
GAMS: J1a3
Discrete cosine transform (easy-to-use)
Names: c06rbf; nagf_sum_fft_real_cosine_simple
Keywords: cosine transform
GAMS: J1a3
Discrete quarter-wave sine transform (easy-to-use)
Names: c06rcf; nagf_sum_fft_real_qtrsine_simple
Keywords: sine transform
GAMS: J1a3
Discrete quarter-wave cosine transform (easy-to-use)
Names: c06rdf; nagf_sum_fft_real_qtrcosine_simple
Keywords: cosine transform
GAMS: J1a3
Multiple discrete sine transforms, simple
Names: c06rec; nag_sum_fft_sine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; sine transform
GAMS: J1a3
Multiple discrete sine transforms, simple
Names: c06ref; nagf_sum_fft_sine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; sine transform
GAMS: J1a3
Multiple discrete cosine transforms, simple
Names: c06rfc; nag_sum_fft_cosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real
GAMS: J1a3
Multiple discrete cosine transforms, simple
Names: c06rff; nagf_sum_fft_cosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real
GAMS: J1a3
Multiple discrete quarter-wave sine transforms, simple
Names: c06rgc; nag_sum_fft_qtrsine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave; sine transform
GAMS: J1a3
Multiple discrete quarter-wave sine transforms, simple
Names: c06rgf; nagf_sum_fft_qtrsine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave; sine transform
GAMS: J1a3
Multiple discrete quarter-wave cosine transforms, simple
Names: c06rhc; nag_sum_fft_qtrcosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave
GAMS: J1a3
Multiple discrete quarter-wave cosine transforms, simple
Names: c06rhf; nagf_sum_fft_qtrcosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave
GAMS: J1a3
Multidimensional fast Gauss transform
Names: c06sac; nag_sum_fast_gauss
Keywords: Fast Gauss Transform; summation of series
GAMS: J
Multidimensional fast Gauss transform
Names: c06saf; nagf_sum_fast_gauss
Keywords: Fast Gauss Transform; summation of series
GAMS: J
Two-dimensional discrete wavelet transform
Names: c09eac; nag_dwt_2d
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Two-dimensional discrete wavelet transform
Names: c09eaf; nagf_wav_2d_sngl_fwd
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Two-dimensional inverse discrete wavelet transform
Names: c09ebc; nag_idwt_2d
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Two-dimensional inverse discrete wavelet transform
Names: c09ebf; nagf_wav_2d_sngl_inv
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Three-dimensional discrete wavelet transform
Names: c09fac; nag_dwt_3d
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
Three-dimensional discrete wavelet transform
Names: c09faf; nagf_wav_3d_sngl_fwd
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
Three-dimensional inverse discrete wavelet transform
Names: c09fbc; nag_idwt_3d
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
Three-dimensional inverse discrete wavelet transform
Names: c09fbf; nagf_wav_3d_sngl_inv
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands
Names: d01ahf; nagf_quad_1d_fin_well
Keywords: finance; integration, adaptive; quadrature, adaptive
GAMS: H2a1a1
Old routine for calculating weights and abscissae for Gaussian quadrature rules, replaced by
d01tcf Names: d01bcf; nagf_quad_1d_gauss_wgen
Keywords: abscissae; cubature; finance; integration, non-adaptive; weights and abscissae
GAMS: H2cTwo-dimensional quadrature, finite region
Names: d01dac; nag_quad_2d_fin
Keywords: finance; integration, multidimensional; quadrature, adaptive
GAMS: H2b1a1
Two-dimensional quadrature, finite region
Names: d01daf; nagf_quad_2d_fin
Keywords: finance; integration, multidimensional; quadrature, adaptive
GAMS: H2b1a1
Multidimensional adaptive quadrature over hyper-rectangle, multiple integrands
Names: d01eaf; nagf_quad_md_adapt_multi
Keywords: integration, adaptive; integration, multidimensional; quadrature, adaptive; vectorized quadrature
GAMS: H2b1a1
Multi-dimensional quadrature using sparse grids
Names: d01esc; nag_quad_md_sgq_multi_vec
Keywords: automatic; multidimensional; multiple integrands; sparse; vectorized
GAMS: H2b1a1
Multi-dimensional quadrature using sparse grids
Names: d01esf; nagf_quad_md_sgq_multi_vec
Keywords: automatic; multidimensional; multiple integrands; sparse; vectorized
GAMS: H2b1a1
Multidimensional adaptive quadrature over hyper-rectangle
Names: d01fcf; nagf_quad_md_adapt
Keywords: finance; integration, adaptive; integration, multidimensional; quadrature, adaptive
GAMS: H2b1a1
One-dimensional quadrature, integration of function defined by data values, Gill–Miller method
Names: d01gaf; nagf_quad_1d_data
Keywords: finance; Gill–Miller quadrature; integration, non-adaptive; quadrature non-adaptive
GAMS: H2a1b2
Multidimensional quadrature over hyper-rectangle, Monte Carlo method
Names: d01gbf; nagf_quad_md_mcarlo
Keywords: integration, multidimensional; Monte Carlo method; quadrature non-adaptive
GAMS: H2b1a1
Multidimensional quadrature, general product region, number-theoretic method
Names: d01gcf; nagf_quad_md_numth
Keywords: integration, multidimensional; Korobov–Conroy method, numerical integration; numerical integration; quadrature non-adaptive
GAMS: H2b1a2
Multidimensional quadrature, general product region, number-theoretic method
Names: d01gdc; nag_quad_md_numth_vec
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b1a2
Multidimensional quadrature, general product region, number-theoretic method, variant of
d01gcf efficient on vector machines
Names: d01gdf; nagf_quad_md_numth_vec
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b1a2Multidimensional quadrature over an n-simplex
Names: d01pac; nag_quad_md_simplex
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b2a2
Multidimensional quadrature over an n-simplex
Names: d01paf; nagf_quad_md_simplex
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b2a2
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
Names: d01rac; nag_quad_1d_gen_vec_multi_rcomm
Keywords: integration, adaptive; quadrature, adaptive
GAMS: H2a1a1
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
Names: d01raf; nagf_quad_1d_gen_vec_multi_rcomm
Keywords: integration, adaptive; quadrature, adaptive
GAMS: H2a1a1
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
Names: d01tcc; nag_quad_dim1_gauss_wgen
Keywords: abscissae; cubature; finance; integration, non-adaptive; integration, numerical; weights and abscissae
GAMS: H2c
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
Names: d01tcf; nagf_quad_dim1_gauss_wgen
Keywords: abscissae; cubature; finance; integration, non-adaptive; integration, numerical; weights and abscissae
GAMS: H2c
Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch
Names: d01tdc; nag_quad_1d_gauss_wrec
Keywords: abscissae; cubature; Gaussian; Golub; Golub and Welsch; integration; non-adaptive; weights and abscissae; Welsch
GAMS: H2c
Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch
Names: d01tdf; nagf_quad_1d_gauss_wrec
Keywords: abscissae; cubature; Gaussian; Golub; Golub and Welsch; integration; non-adaptive; weights and abscissae; Welsch
GAMS: H2c
Option setting routine
Names: d01zkc; nag_quad_opt_set
Keywords: integration, options; options, computational; quadrature, options
GAMS: H2c
Option setting routine
Names: d01zkf; nagf_quad_opt_set
Keywords: integration, options; options, computational; quadrature, options
GAMS: H2c
Ordinary differential equations, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined
Names: d02agf; nagf_ode_bvp_shoot_genpar_intern
Keywords: boundary value problem; BVP; shooting method, ODE
GAMS: I1b2, I1b3
Ordinary differential equations, initial value problem, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver)
Names: d02bjf; nagf_ode_ivp_rk_zero_simple
Keywords: initial value problem; IVP, initial value problem; RK45; Runge–Kutta–Merson, ODE
GAMS: I1a1a
Ordinary differential equations, stiff initial value problem, backward differentiation formulae method, until function of solution is zero, intermediate output (simple driver)
Names: d02ejf; nagf_ode_ivp_bdf_zero_simple
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Ordinary differential equations, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem
Names: d02gaf; nagf_ode_bvp_fd_nonlin_fixedbc
Keywords: boundary value problem; BVP; finite difference method, ODE
GAMS: I1b2
Ordinary differential equations, boundary value problem, finite difference technique with deferred correction, general linear problem
Names: d02gbf; nagf_ode_bvp_fd_lin_gen
Keywords: boundary value problem; BVP; finite difference method, ODE
GAMS: I1b1
Ordinary differential equations, boundary value problem, shooting and matching, boundary values to be determined
Names: d02haf; nagf_ode_bvp_shoot_bval
Keywords: boundary value problem; BVP; shooting method, ODE
GAMS: I1b2
Ordinary differential equations, boundary value problem, shooting and matching, general parameters to be determined
Names: d02hbf; nagf_ode_bvp_shoot_genpar
Keywords: boundary value problem; BVP; shooting method, ODE
GAMS: I1b2, I1b3
Ordinary differential equations, boundary value problem, collocation and least squares, single nth-order linear equation
Names: d02jaf; nagf_ode_bvp_coll_nth
Keywords: boundary value problem; BVP; collocation method
GAMS: I1b1
Ordinary differential equations, boundary value problem, collocation and least squares, system of first-order linear equations
Names: d02jbf; nagf_ode_bvp_coll_sys
Keywords: boundary value problem; BVP; collocation method
GAMS: I1b1
Explicit ordinary differential equations, stiff initial value problem, full Jacobian (comprehensive)
Names: d02nbf; nagf_ode_ivp_stiff_exp_fulljac
Keywords: backward difference formula; initial value problem; IVP, initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Explicit ordinary differential equations, stiff initial value problem, banded Jacobian (comprehensive)
Names: d02ncf; nagf_ode_ivp_stiff_exp_bandjac
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Explicit ordinary differential equations, stiff initial value problem, sparse Jacobian (comprehensive)
Names: d02ndf; nagf_ode_ivp_stiff_exp_sparjac
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Implicit ordinary differential equations/DAEs, initial value problem, DASSL method integrator
Names: d02nec; nag_dae_ivp_dassl_gen
Keywords: DAE, differential algebraic equations; DASSL, ordinary differential equations; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem
GAMS: I1a
Implicit ordinary differential equations/DAEs, initial value problem, DASSL method integrator
Names: d02nef; nagf_ode_dae_dassl_gen
Keywords: DAE, differential algebraic equations; DASSL, ordinary differential equations; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem
GAMS: I1a
Implicit/algebraic ordinary differential equations, stiff initial value problem, full Jacobian (comprehensive)
Names: d02ngf; nagf_ode_ivp_stiff_imp_fulljac
Keywords: backward difference formula; BDF, backward differentiation formula; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Implicit/algebraic ordinary differential equations, stiff initial value problem, banded Jacobian (comprehensive)
Names: d02nhf; nagf_ode_ivp_stiff_imp_bandjac
Keywords: backward difference formula; BDF, backward differentiation formula; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Implicit/algebraic ordinary differential equations, stiff initial value problem, sparse Jacobian (comprehensive)
Names: d02njf; nagf_ode_ivp_stiff_imp_sparjac
Keywords: backward difference formula; BDF, backward differentiation formula; discretised system; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; Jacobian; ODE; stiff differential equations
GAMS: I1a2
Explicit ordinary differential equations, stiff initial value problem (reverse communication, comprehensive)
Names: d02nmf; nagf_ode_ivp_stiff_exp_revcom
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Implicit/algebraic ordinary differential equations, stiff initial value problem (reverse communication, comprehensive)
Names: d02nnf; nagf_ode_ivp_stiff_imp_revcom
Keywords: backward difference formula; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over range with output
Names: d02pec; nag_ode_ivp_rkts_range
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over range with output
Names: d02pef; nagf_ode_ivp_rkts_range
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over one step
Names: d02pfc; nag_ode_ivp_rkts_onestep
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over one step
Names: d02pff; nagf_ode_ivp_rkts_onestep
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration by reverse communication
Names: d02pgc; nag_ode_ivp_rk_step_revcomm
Keywords: IVP, initial value problem; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration by reverse communication
Names: d02pgf; nagf_ode_ivp_rk_step_revcomm
Keywords: IVP, initial value problem; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Set up interpolant by reverse communication for solution and derivative evaluations at points within the range of the last integration step taken by
d02pgc Names: d02phc; nag_ode_ivp_rk_interp_setup
Keywords: first-order system; interpolation; IVP, initial value problem; Nonstiff; Runge–Kutta–Merson
GAMS: I1cSet up interpolant by reverse communication for solution and derivative evaluations at points within the range of the last integration step taken by
d02pgf Names: d02phf; nagf_ode_ivp_rk_interp_setup
Keywords: first-order system; interpolation; IVP, initial value problem; Nonstiff; Runge–Kutta–Merson
GAMS: I1cOrdinary differential equations, initial value problem, interpolation for
d02pfc Names: d02psc; nag_ode_ivp_rkts_interp
Keywords: interpolation; IVP, initial value problem; Runge–Kutta–Merson
GAMS: I1cOrdinary differential equations, initial value problem, interpolation for
d02pff Names: d02psf; nagf_ode_ivp_rkts_interp
Keywords: interpolation; IVP, initial value problem; Runge–Kutta–Merson
GAMS: I1cOrdinary differential equations, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
Names: d02raf; nagf_ode_bvp_fd_nonlin_gen
Keywords: BVP, boundary value problem; finite difference method, ODE
GAMS: I1b2
Ordinary differential equations, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined
Names: d02saf; nagf_ode_bvp_shoot_genpar_algeq
Keywords: boundary value problem; BVP; parameterized first order; shooting method, ODE; two-point boundary value problem
GAMS: I1b2
nth-order linear ordinary differential equations, boundary value problem, collocation and least squares
Names: d02tgf; nagf_ode_bvp_coll_nth_comp
Keywords: BVP, boundary value problem; collocation method
GAMS: I1b1
Ordinary differential equations, general nonlinear boundary value problem, collocation technique
Names: d02tlc; nag_ode_bvp_coll_nlin_solve
Keywords: boundary value problem; BVP; differential equations; nonlinear mixed order; ordinary differential equations; two-point boundary value problem
GAMS: I1b2
Ordinary differential equations, general nonlinear boundary value problem, collocation technique (thread safe)
Names: d02tlf; nagf_ode_bvp_coll_nlin_solve
Keywords: boundary value problem; BVP; differential equations; nonlinear mixed order; ordinary differential equations; two-point boundary value problem
GAMS: I1b2
Ordinary differential equations, general nonlinear boundary value problem, interpolation for
d02tlc Names: d02tyc; nag_ode_bvp_coll_nlin_interp
Keywords: BVP, boundary value problem; collocation method; interpolation
GAMS: I1cOrdinary differential equations, general nonlinear boundary value problem, interpolation for
d02tlf Names: d02tyf; nagf_ode_bvp_coll_nlin_interp
Keywords: BVP, boundary value problem; collocation method; interpolation
GAMS: I1cCoefficients of Chebyshev interpolating polynomial from function values on Chebyshev grid
Names: d02uac; nag_ode_bvp_ps_lin_coeffs
Keywords: Chebyshev polynomial interpolation; Gauss–Lobatto grid; interpolation
GAMS: E1b
Coefficients of Chebyshev interpolating polynomial from function values on Chebyshev grid
Names: d02uaf; nagf_ode_bvp_ps_lin_coeffs
Keywords: Chebyshev polynomial interpolation; Gauss–Lobatto grid; interpolation
GAMS: E1b
Function or low-order-derivative values on Chebyshev grid from coefficients of Chebyshev interpolating polynomial
Names: d02ubc; nag_ode_bvp_ps_lin_cgl_vals
Keywords: Chebyshev polynomial interpolation; Chebyshev series, solution; Gauss–Lobatto grid; interpolation
GAMS: E3a1, E3a2
Function or low-order-derivative values on Chebyshev grid from coefficients of Chebyshev interpolating polynomial
Names: d02ubf; nagf_ode_bvp_ps_lin_cgl_vals
Keywords: Chebyshev polynomial interpolation; Chebyshev series, solution; Gauss–Lobatto grid; interpolation
GAMS: E3a1, E3a2
Differentiate a function by the FFT using function values on Chebyshev grid
Names: d02udc; nag_ode_bvp_ps_lin_cgl_deriv
Keywords: Fast Fourier Transform; FFT; Gauss–Lobatto grid
GAMS: H1, E3a2
Differentiate a function by the FFT using function values on Chebyshev grid
Names: d02udf; nagf_ode_bvp_ps_lin_cgl_deriv
Keywords: Fast Fourier Transform; FFT; Gauss–Lobatto grid
GAMS: H1, E3a2
Solve linear constant coefficient boundary value problem on Chebyshev grid, Integral formulation
Names: d02uec; nag_ode_bvp_ps_lin_solve
Keywords: boundary value problem; BVP; Gauss–Lobatto grid; pseudo-spectral method
GAMS: I1b1
Solve linear constant coefficient boundary value problem on Chebyshev grid, Integral formulation
Names: d02uef; nagf_ode_bvp_ps_lin_solve
Keywords: boundary value problem; BVP; Gauss–Lobatto grid; pseudo-spectral method
GAMS: I1b1
Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain
Names: d03eaf; nagf_pde_2d_laplace
Keywords: elliptic partial differential equations; Laplace's equation
GAMS: I2b1a1b
Elliptic PDE, solution of finite difference equations by a multigrid technique
Names: d03edf; nagf_pde_2d_ellip_mgrid
Keywords: elliptic partial differential equations; multigrid method; rectangular; two-dimensional
GAMS: I2b4b
Elliptic PDE, Helmholtz equation, three-dimensional Cartesian coordinates
Names: d03faf; nagf_pde_3d_ellip_helmholtz
Keywords: elliptic partial differential equations; Helmholtz equation, PDE
GAMS: I2b1a1a
Finite difference solution of the Black–Scholes equations
Names: d03ncc; nag_pde_bs_1d
Keywords: Black–Scholes option pricing; one-dimensional; parabolic partial differential equation
GAMS: I2a1a
Finite difference solution of the Black–Scholes equations
Names: d03ncf; nagf_pde_1d_blackscholes_fd
Keywords: Black–Scholes option pricing; one-dimensional; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, finite differences, one space variable
Names: d03pcc; nag_pde_parab_1d_fd
Keywords: method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, finite differences, one space variable
Names: d03pca; nagf_pde_1d_parab_fd
Keywords: method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, finite differences, one space variable
Names: d03pcf; nagf_pde_1d_parab_fd_old
Keywords: method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pdc; nag_pde_parab_1d_coll
Keywords: collocation method; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pda; nagf_pde_1d_parab_coll
Keywords: collocation method; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pdf; nagf_pde_1d_parab_coll_old
Keywords: collocation method; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of first-order PDEs, method of lines, Keller box discretization, one space variable
Names: d03pec; nag_pde_parab_1d_keller
Keywords: Keller box discretization; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of first-order PDEs, method of lines, Keller box discretization, one space variable
Names: d03pef; nagf_pde_1d_parab_keller
Keywords: Keller box discretization; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03pfc; nag_pde_parab_1d_cd
Keywords: convection-diffusion, PDE; method of lines; partial differential equations
GAMS: I2a2
General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03pff; nagf_pde_1d_parab_convdiff
Keywords: convection-diffusion, PDE; method of lines; partial differential equations
GAMS: I2a2
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
Names: d03phc; nag_pde_parab_1d_fd_ode
Keywords: DAE, differential algebraic equations; finite difference discretization; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
Names: d03pha; nagf_pde_1d_parab_dae_fd
Keywords: DAE, differential algebraic equations; finite difference discretization; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
Names: d03phf; nagf_pde_1d_parab_dae_fd_old
Keywords: DAE, differential algebraic equations; finite difference discretization; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pjc; nag_pde_parab_1d_coll_ode
Keywords: DAE, differential algebraic equations; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pja; nagf_pde_1d_parab_dae_coll
Keywords: DAE, differential algebraic equations; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pjf; nagf_pde_1d_parab_dae_coll_old
Keywords: DAE, differential algebraic equations; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, one space variable
Names: d03pkc; nag_pde_parab_1d_keller_ode
Keywords: DAE, differential algebraic equations; Keller box discretization; method of lines; partial differential equations
GAMS: I1a2, I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, one space variable
Names: d03pkf; nagf_pde_1d_parab_dae_keller
Keywords: DAE, differential algebraic equations; Keller box discretization; method of lines; partial differential equations
GAMS: I1a2, I2a1a
General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03plc; nag_pde_parab_1d_cd_ode
Keywords: convection-diffusion, PDE; DAE, differential algebraic equations; partial differential equations
GAMS: I2a2
General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03plf; nagf_pde_1d_parab_convdiff_dae
Keywords: convection-diffusion, PDE; DAE, differential algebraic equations; partial differential equations
GAMS: I2a2
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
Names: d03ppc; nag_pde_parab_1d_fd_ode_remesh
Keywords: DAE, differential algebraic equations; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I1a2, I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
Names: d03ppa; nagf_pde_1d_parab_remesh_fd
Keywords: DAE, differential algebraic equations; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I1a2, I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
Names: d03ppf; nagf_pde_1d_parab_remesh_fd_old
Keywords: DAE, differential algebraic equations; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I1a2, I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, remeshing, one space variable
Names: d03prc; nag_pde_parab_1d_keller_ode_remesh
Keywords: adaptive grid, PDE; DAE, differential algebraic equations; Keller box discretization; method of lines
GAMS: I1a2, I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, remeshing, one space variable
Names: d03prf; nagf_pde_1d_parab_remesh_keller
Keywords: adaptive grid, PDE; DAE, differential algebraic equations; Keller box discretization; method of lines
GAMS: I1a2, I2a1a
General system of convection-diffusion PDEs, coupled DAEs, method of lines, upwind scheme, remeshing, one space variable
Names: d03psc; nag_pde_parab_1d_cd_ode_remesh
Keywords: adaptive grid, PDE; convection-diffusion, PDE; DAE, differential algebraic equations; hyperbolic equation; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I2a2
General system of convection-diffusion PDEs, coupled DAEs, method of lines, upwind scheme, remeshing, one space variable
Names: d03psf; nagf_pde_1d_parab_convdiff_remesh
Keywords: adaptive grid, PDE; convection-diffusion, PDE; DAE, differential algebraic equations; hyperbolic equation; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I2a2
General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region
Names: d03raf; nagf_pde_2d_gen_order2_rectangle
Keywords: mesh refinement; method of lines; two-dimensional PDE
GAMS: I2a1b
General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectilinear region
Names: d03rbf; nagf_pde_2d_gen_order2_rectilinear
Keywords: mesh refinement; method of lines; two-dimensional PDE
GAMS: I2a1b
Linear nonsingular Fredholm integral equation, second kind, split kernel
Names: d05aac; nag_inteq_fredholm2_split
Keywords: Fredholm integral equations
GAMS: I3
Linear nonsingular Fredholm integral equation, second kind, split kernel
Names: d05aaf; nagf_inteq_fredholm2_split
Keywords: Fredholm integral equations
GAMS: I3
Linear nonsingular Fredholm integral equation, second kind, smooth kernel
Names: d05abc; nag_inteq_fredholm2_smooth
Keywords: Fredholm integral equations
GAMS: I3
Linear nonsingular Fredholm integral equation, second kind, smooth kernel
Names: d05abf; nagf_inteq_fredholm2_smooth
Keywords: Fredholm integral equations
GAMS: I3
Nonlinear Volterra convolution equation, second kind
Names: d05bac; nag_inteq_volterra2
Keywords: Volterra integral equations
GAMS: I3
Nonlinear Volterra convolution equation, second kind
Names: d05baf; nagf_inteq_volterra2
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, second kind, weakly singular
Names: d05bdc; nag_inteq_abel2_weak
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, second kind, weakly singular
Names: d05bdf; nagf_inteq_abel2_weak
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, first kind, weakly singular
Names: d05bec; nag_inteq_abel1_weak
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, first kind, weakly singular
Names: d05bef; nagf_inteq_abel1_weak
Keywords: Volterra integral equations
GAMS: I3
Generate weights for use in solving weakly singular Abel-type equations
Names: d05byc; nag_inteq_abel_weak_weights
Keywords: weights and abscissae
GAMS: I3
Generate weights for use in solving weakly singular Abel-type equations
Names: d05byf; nagf_inteq_abel_weak_weights
Keywords: weights and abscissae
GAMS: I3
Generates a two-dimensional mesh using a Delaunay–Voronoi process
Names: d06abc; nag_mesh2d_delaunay
Keywords: Delaunay–Voronoi process; triangular mesh
GAMS: I2b4a
Generates a two-dimensional mesh using a Delaunay–Voronoi process
Names: d06abf; nagf_mesh_2d_gen_delaunay
Keywords: Delaunay–Voronoi process; triangular mesh
GAMS: I2b4a
Generates a two-dimensional mesh using an Advancing-front method
Names: d06acc; nag_mesh2d_front
Keywords: Advancing-front method; triangular mesh
GAMS: I2b4a
Generates a two-dimensional mesh using an Advancing-front method
Names: d06acf; nagf_mesh_2d_gen_front
Keywords: Advancing-front method; triangular mesh
GAMS: I2b4a
Uses a barycentering technique to smooth a given mesh
Names: d06cac; nag_mesh2d_smooth
Keywords: barycentering; barycentric; smoothing
GAMS: I2b4a, K5
Uses a barycentering technique to smooth a given mesh
Names: d06caf; nagf_mesh_2d_smooth_bary
Keywords: barycentering; barycentric; smoothing
GAMS: I2b4a, K5
Generates a sparsity pattern of a Finite Element matrix associated with a given mesh
Names: d06cbc; nag_mesh2d_sparse
Keywords: finite element; sparsity pattern
GAMS: I2b4a
Generates a sparsity pattern of a Finite Element matrix associated with a given mesh
Names: d06cbf; nagf_mesh_2d_sparsity
Keywords: finite element; sparsity pattern
GAMS: I2b4a
Renumbers a given mesh using Gibbs method
Names: d06ccc; nag_mesh2d_renum
Keywords: Gibbs method; mesh renumbering
GAMS: I2b4a
Renumbers a given mesh using Gibbs method
Names: d06ccf; nagf_mesh_2d_renumber
Keywords: Gibbs method; mesh renumbering
GAMS: I2b4a
Interpolated values, variables computed by
e01cec, monotone convex Hagan–West procedure, one variable
Names: e01cfc; nag_interp_1d_monconv_eval
Keywords: amelioration; Hagan–West; instantaneous forward rates; monotone convex interpolation; shape-preserving interpolation; yield curve
GAMS: E3a1Interpolated values, variables computed by
e01cef, monotone convex Hagan–West procedure, one variable
Names: e01cff; nagf_interp_dim1_monconv_eval
Keywords: amelioration; Hagan–West; instantaneous forward rates; monotone convex interpolation; shape-preserving interpolation; yield curve
GAMS: E3a1Interpolating functions, fitting bicubic spline, data on rectangular grid
Names: e01daf; nagf_interp_2d_spline_grid
Keywords: bicubic spline; finance; two-dimensional
GAMS: E2a
Interpolating functions, modified Shepard's method, two variables
Names: e01sgc; nag_2d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, two variables
Names: e01sgf; nagf_interp_2d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by
e01sgc, function and first derivatives, two variables
Names: e01shc; nag_2d_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolated values, evaluate interpolant computed by
e01sgf, function and first derivatives, two variables
Names: e01shf; nagf_interp_2d_scat_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolating functions, modified Shepard's method, three variables
Names: e01tgc; nag_3d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, three variables
Names: e01tgf; nagf_interp_3d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by
e01tgc, function and first derivatives, three variables
Names: e01thc; nag_3d_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolated values, evaluate interpolant computed by
e01tgf, function and first derivatives, three variables
Names: e01thf; nagf_interp_3d_scat_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolating functions, modified Shepard's method, four variables
Names: e01tkc; nag_4d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, four variables
Names: e01tkf; nagf_interp_4d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by
e01tkc, function and first derivatives, four variables
Names: e01tlc; nag_4d_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolated values, evaluate interpolant computed by
e01tkf, function and first derivatives, four variables
Names: e01tlf; nagf_interp_4d_scat_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolating functions, modified Shepard's method, five variables
Names: e01tmc; nag_5d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, five variables
Names: e01tmf; nagf_interp_5d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by
e01tmc, function and first derivatives, five variables
Names: e01tnc; nag_5d_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolated values, evaluate interpolant computed by
e01tmf, function and first derivatives, five variables
Names: e01tnf; nagf_interp_5d_scat_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolating function, modified Shepard's method, d dimensions
Names: e01zmc; nag_nd_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating function, modified Shepard's method, d dimensions
Names: e01zmf; nagf_interp_nd_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by
e01zmc, function and first derivatives,
d dimensions
Names: e01znc; nag_nd_shep_eval
Keywords: Shepard method
GAMS: E2bInterpolated values, evaluate interpolant computed by
e01zmf, function and first derivatives,
d dimensions
Names: e01znf; nagf_interp_nd_scat_shep_eval
Keywords: Shepard method
GAMS: E2bMinimax curve fit by polynomials
Names: e02alc; nag_1d_minimax_polynomial
Keywords: minimax; surface fitting
GAMS: K2
Minimax curve fit by polynomials
Names: e02alf; nagf_fit_1d_minimax_polynomial
Keywords: minimax; surface fitting
GAMS: K2
Least squares cubic spline curve fit, automatic knot placement
Names: e02bef; nagf_fit_1dspline_auto
Keywords: B-splines; cubic splines; least squares; smoothing
GAMS: K1a1a1, L8g
Evaluation of fitted cubic spline, function and optionally derivatives at a vector of points
Names: e02bfc; nag_fit_1dspline_deriv_vector
Keywords: b-splines, derivative; cubic splines
GAMS: E1a, E3a1, E3a2, K1a1a1, K6a1, K6a2, L8g
Evaluation of fitted cubic spline, function and optionally derivatives at a vector of points
Names: e02bff; nagf_fit_1dspline_deriv_vector
Keywords: b-splines, derivative; cubic splines
GAMS: E1a, E3a1, E3a2, K1a1a1, K6a1, K6a2, L8g
Least squares surface fit by polynomials, data on lines parallel to one independent coordinate axis
Names: e02cac; nag_2d_cheb_fit_lines
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; data-on-lines polynomial approximation; least squares; polynomial approximation; two-dimensional polynomial approximation
GAMS: K1a1b
Least squares surface fit by polynomials, data on lines parallel to one independent coordinate axis
Names: e02caf; nagf_fit_2dcheb_lines
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; data-on-lines polynomial approximation; least squares; polynomial approximation; two-dimensional polynomial approximation
GAMS: K1a1b
Evaluation of fitted polynomial in two variables
Names: e02cbc; nag_2d_cheb_eval
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; polynomial approximation; two-dimensional polynomial approximation
GAMS: E3a1, K6a1
Evaluation of fitted polynomial in two variables
Names: e02cbf; nagf_fit_2dcheb_eval
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; polynomial approximation; two-dimensional polynomial approximation
GAMS: E3a1, K6a1
Least squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid
Names: e02dcf; nagf_fit_2dspline_grid
Keywords: bicubic splines; B-splines; least squares; smoothing; two-dimensional spline approximation
GAMS: K1a1b
Least squares surface fit by bicubic splines with automatic knot placement, scattered data
Names: e02ddf; nagf_fit_2dspline_sctr
Keywords: bicubic splines; B-splines; least squares; scattered data; smoothing
GAMS: K1a1b
Evaluation of fitted bicubic spline at a mesh of points
Names: e02dff; nagf_fit_2dspline_evalm
Keywords: bicubic splines; B-splines; finance; gridded data
GAMS: E3a1
Evaluation of spline surface at mesh of points with derivatives
Names: e02dhc; nag_2d_spline_deriv_rect
Keywords: bicubic spline, partial derivative; bicubic splines
GAMS: K6a1, K6a2
Evaluation of spline surface at mesh of points with derivatives
Names: e02dhf; nagf_fit_2dspline_derivm
Keywords: bicubic spline, partial derivative; bicubic splines
GAMS: K6a1, K6a2
L1-approximation by general linear function subject to linear inequality constraints
Names: e02gbf; nagf_fit_glinc_l1sol
Keywords: L1 approximation; outlier detection
GAMS: D9b3
Spline approximation to a set of scattered data using a two-stage approximation method
Names: e02jdc; nag_2d_spline_fit_ts_scat
Keywords: radial basis functions; RBF; scattered data; spline; thin plate spline; TPS; two-dimensional spline approximation
GAMS: E2b
Spline approximation to a set of scattered data using a two-stage approximation method
Names: e02jdf; nagf_fit_2dspline_ts_sctr
Keywords: radial basis functions; RBF; scattered data; spline; thin plate spline; TPS; two-dimensional spline approximation
GAMS: E2b
Padé approximants
Names: e02rac; nag_1d_pade
Keywords: Padé approximation
GAMS: K4
Padé approximants
Names: e02raf; nagf_fit_pade_app
Keywords: Padé approximation
GAMS: K4
Option setting routine
Names: e02zkc; nag_fit_opt_set
Keywords: options, computational
GAMS: E3d
Option setting routine
Names: e02zkf; nagf_fit_opt_set
Keywords: options, computational
GAMS: E3d
Unconstrained minimum, Nelder–Mead simplex algorithm, using function values only
Names: e04cbc; nag_opt_simplex_easy
Keywords: derivative-free minimization; finance; minimization, unconstrained; Nelder–Mead algorithm; NLP; nonlinear programming; simplex algorithm
GAMS: G1b2
Unconstrained minimum, Nelder–Mead simplex algorithm, using function values only
Names: e04cbf; nagf_opt_uncon_simplex
Keywords: derivative-free minimization; finance; minimization, unconstrained; Nelder–Mead algorithm; NLP; nonlinear programming; simplex algorithm
GAMS: G1b2
Unconstrained minimum, preconditioned conjugate gradient algorithm, using first derivatives (comprehensive)
Names: e04dga; nagf_opt_uncon_conjgrd_comp
Keywords: conjugate gradient method; finance; minimization, unconstrained; NLP; nonlinear programming; quasi-Newton
GAMS: G1b1b
Unconstrained minimum, preconditioned conjugate gradient algorithm, using first derivatives (comprehensive)
Names: e04dgf; nagf_opt_uncon_conjgrd_comp_old
Keywords: conjugate gradient method; finance; minimization, unconstrained; NLP; nonlinear programming; quasi-Newton
GAMS: G1b1b
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using function values only (comprehensive)
Names: e04fcf; nagf_opt_lsq_uncon_mod_func_comp
Keywords: data fitting; derivative-free minimization; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a1, L8e1b1
Derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04ffc; nag_opt_handle_solve_dfls
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; nonlinear least squares; sum of squares
GAMS: G2h1a1
Derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04fff; nagf_opt_handle_solve_dfls
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; nonlinear least squares; sum of squares
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04fgc; nag_opt_handle_solve_dfls_rcomm
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; sum of squares
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04fgf; nagf_opt_handle_solve_dfls_rcomm
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; sum of squares
GAMS: G2h1a1
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using function values only (easy-to-use)
Names: e04fyf; nagf_opt_lsq_uncon_mod_func_easy
Keywords: data fitting; derivative-free minimization; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a1, L8e1b1
Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm, using first derivatives (comprehensive)
Names: e04gbf; nagf_opt_lsq_uncon_quasi_deriv_comp
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; nonlinear least squares; quasi-Newton algorithm; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using first derivatives (comprehensive)
Names: e04gdf; nagf_opt_lsq_uncon_mod_deriv_comp
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Bound constrained nonlinear least squares, comprehensive trust-region algorithm using first (and second) derivatives
Names: e04ggc; nag_opt_handle_solve_bxnl
Keywords: calibration; data fitting; finance; Gauss–Newton optimization; nonlinear least squares; sum of squares
GAMS: K1b2a
Bound constrained nonlinear least squares, comprehensive trust-region algorithm using first (and second) derivatives
Names: e04ggf; nagf_opt_handle_solve_bxnl
Keywords: calibration; data fitting; finance; Gauss–Newton optimization; nonlinear least squares; sum of squares
GAMS: K1b2a
Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm, using first derivatives (easy-to-use)
Names: e04gyf; nagf_opt_lsq_uncon_quasi_deriv_easy
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; nonlinear least squares; quasi-Newton algorithm; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using first derivatives (easy-to-use)
Names: e04gzf; nagf_opt_lsq_uncon_mod_deriv_easy
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Check user's routine for calculating first derivatives of function
Names: e04hcf; nagf_opt_check_deriv
Keywords: check derivative; finance; minimization, unconstrained; service routine
GAMS: G4c
Check user's routine for calculating second derivatives of function
Names: e04hdf; nagf_opt_check_deriv2
Keywords: check derivative; finance; minimization, unconstrained; service routine
GAMS: G4c
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (comprehensive)
Names: e04hef; nagf_opt_lsq_uncon_mod_deriv2_comp
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a3
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (easy-to-use)
Names: e04hyf; nagf_opt_lsq_uncon_mod_deriv2_easy
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a3
Bound constrained minimum, model-based algorithm, using function values only
Names: e04jcc; nag_opt_bounds_qa_no_deriv
Keywords: BOBYQA method; finance; minimization, simple bound constraints; NLP; nonlinear programming
GAMS: G2h1a1
Bound constrained minimum, model-based algorithm, using function values only
Names: e04jcf; nagf_opt_bounds_bobyqa_func
Keywords: BOBYQA method; finance; minimization, simple bound constraints; NLP; nonlinear programming
GAMS: G2h1a1
Direct communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jdc; nag_opt_handle_solve_dfno
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Direct communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jdf; nagf_opt_handle_solve_dfno
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jec; nag_opt_handle_solve_dfno_rcomm
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jef; nagf_opt_handle_solve_dfno_rcomm
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Bound constrained minimum, quasi-Newton algorithm, using function values only (easy-to-use)
Names: e04jyf; nagf_opt_bounds_quasi_func_easy
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; finance; minimization, simple bound constraints; NLP; nonlinear programming; quasi-Newton algorithm
GAMS: G2h1a1
Bound constrained minimum, modified Newton algorithm, using first derivatives (comprehensive)
Names: e04kdf; nagf_opt_bounds_mod_deriv_comp
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a2
First-order active-set method for box constrained nonlinear optimization with low memory requirements
Names: e04kfc; nag_opt_handle_solve_bounds_foas
Keywords: bounds; box constraints; CG; conjugate gradient; first order method; maximization; minimizing or maximizing a function; nonlinear objective; optimization
GAMS: G4d, G2e2, G2h3b
First-order active-set method for box constrained nonlinear optimization with low memory requirements
Names: e04kff; nagf_opt_handle_solve_bounds_foas
Keywords: bounds; box constraints; CG; conjugate gradient; first order method; maximization; minimizing or maximizing a function; nonlinear objective; optimization
GAMS: G4d, G2e2, G2h3b
Bound constrained minimum, quasi-Newton algorithm, using first derivatives (easy-to-use)
Names: e04kyf; nagf_opt_bounds_quasi_deriv_easy
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; finance; minimization, simple bound constraints; NLP; nonlinear programming; quasi-Newton algorithm
GAMS: G2h1a2
Bound constrained minimum, modified Newton algorithm, using first derivatives (easy-to-use)
Names: e04kzf; nagf_opt_bounds_mod_deriv_easy
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a2
Bound constrained minimum, modified Newton algorithm, using first and second derivatives (comprehensive)
Names: e04lbf; nagf_opt_bounds_mod_deriv2_comp
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a3
Bound constrained minimum, modified Newton algorithm, using first and second derivatives (easy-to-use)
Names: e04lyf; nagf_opt_bounds_mod_deriv2_easy
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a3
Linear programming (LP), dense, active-set method
Names: e04mfa; nagf_opt_lp_solve
Keywords: active-set method; finance; LP, linear programming
GAMS: G2a1, G4d
Linear programming (LP), dense, active-set method
Names: e04mff; nagf_opt_lp_solve_old
Keywords: active-set method; finance; LP, linear programming
GAMS: G2a1, G4d
Linear programming (LP), sparse, simplex
Names: e04mkc; nag_opt_handle_solve_lp_simplex
Keywords: linear programming; LP; simplex
GAMS: G2a2, G4d
Linear programming (LP), sparse, simplex
Names: e04mkf; nagf_opt_handle_solve_lp_simplex
Keywords: linear programming; LP; simplex
GAMS: G2a2, G4d
Linear programming (LP), sparse, interior point method (IPM)
Names: e04mtc; nag_opt_handle_solve_lp_ipm
Keywords: interior point method; ipm; linear programming; LP
GAMS: G2a2, G4d
Linear programming (LP), sparse, interior point method (IPM)
Names: e04mtf; nagf_opt_handle_solve_lp_ipm
Keywords: interior point method; ipm; linear programming; LP
GAMS: G2a2, G4d
Read MPS data file defining LP, QP, MILP or MIQP problem
Names: e04mxc; nag_opt_miqp_mps_read
Keywords: linear programming,integer; LP, linear programming; MPSX format; QP, quadratic programming; service routine
GAMS: G4a
Read MPS data file defining LP, QP, MILP or MIQP problem
Names: e04mxf; nagf_opt_miqp_mps_read
Keywords: linear programming,integer; LP, linear programming; MPSX format; QP, quadratic programming; service routine
GAMS: G4a
Linear programming (LP) convex quadratic programming (QP) or linearly-constrained linear least squares problem, dense
Names: e04nca; nagf_opt_lsq_lincon_solve
Keywords: active-set; convex optimization; data fitting; finance; least squares; nonlinear least squares; QP, quadratic programming
GAMS: D9b1, G2a1, G2e1, G4d
Linear programming (LP) convex quadratic programming (QP) or linearly-constrained linear least squares problem, dense
Names: e04ncf; nagf_opt_lsq_lincon_solve_old
Keywords: active-set; convex optimization; data fitting; finance; least squares; nonlinear least squares; QP, quadratic programming
GAMS: D9b1, G2a1, G2e1, G4d
General (possibly non-convex) quadratic programming (QP), dense, active-set method
Names: e04nfa; nagf_opt_qp_dense_solve
Keywords: active-set method; finance; QP, quadratic programming
GAMS: G2a1, G2e1, G2e2, G4d
General (possibly non-convex) quadratic programming (QP), dense, active-set method
Names: e04nff; nagf_opt_qp_dense_solve_old
Keywords: active-set method; finance; QP, quadratic programming
GAMS: G2a1, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method
Names: e04nka; nagf_opt_qpconvex1_sparse_solve
Keywords: finance; LP, linear programming; QP, quadratic programming; service routine
GAMS: G2a2, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method
Names: e04nkf; nagf_opt_qpconvex1_sparse_solve_old
Keywords: finance; LP, linear programming; QP, quadratic programming; service routine
GAMS: G2a2, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method, recommended
Names: e04nqc; nag_opt_sparse_convex_qp_solve
Keywords: active-set method; finance; LP, linear programming; QP, quadratic programming; service routine; sparse convex QP prolem
GAMS: G2a2, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method, recommended
Names: e04nqf; nagf_opt_qpconvex2_sparse_solve
Keywords: active-set method; finance; LP, linear programming; QP, quadratic programming; service routine; sparse convex QP prolem
GAMS: G2a2, G2e1, G2e2, G4d
Computes the least squares solution to a set of linear equations subject to fixed upper and lower bounds on the variables. An option is provided to return a minimal length solution if a solution is not unique
Names: e04pcc; nag_opt_bnd_lin_lsq
Keywords: BVLS, bounded variable least squares; data fitting; finance; NNLS, non-negative least squares; nonlinear least squares; non-negative least squares
GAMS: K1a2
Computes the least squares solution to a set of linear equations subject to fixed upper and lower bounds on the variables. An option is provided to return a minimal length solution if a solution is not unique
Names: e04pcf; nagf_opt_bnd_lin_lsq
Keywords: BVLS, bounded variable least squares; data fitting; finance; NNLS, non-negative least squares; nonlinear least squares; non-negative least squares
GAMS: K1a2
Solve Second-order Cone Programming (SOCP) and other convex related problems, such as, quadratically constrained quadratic programming (QCQP), quadratic programming (QP), sparse, interior point method (IPM)
Names: e04ptc; nag_opt_handle_solve_socp_ipm
Keywords: conic; interior point method; ipm; minimizing or maximizing a function; optimization; quadratic cone; rotated quadratic cone; second-order cone programming; SOCP
GAMS: G2
Solve Second-order Cone Programming (SOCP) and other convex related problems, such as, quadratically constrained quadratic programming (QCQP), quadratic programming (QP), sparse, interior point method (IPM)
Names: e04ptf; nagf_opt_handle_solve_socp_ipm
Keywords: conic; interior point method; ipm; minimizing or maximizing a function; optimization; quadratic cone; rotated quadratic cone; second-order cone programming; SOCP
GAMS: G2
Set a property for a set of variables, such as integrality
Names: e04rcc; nag_opt_handle_set_property
Keywords: binary variable; integer variable; mixed integer
GAMS: G4f
Set a property for a set of variables, such as integrality
Names: e04rcf; nagf_opt_handle_set_property
Keywords: binary variable; integer variable; mixed integer
GAMS: G4f
Retrieve or write a piece of integer information in a problem handle initialized by
e04rac Names: e04rwc; nag_opt_handle_set_get_integer
Keywords: get information; set information
GAMS: G4fRetrieve or write a piece of integer information in a problem handle initialized by
e04raf Names: e04rwf; nagf_opt_handle_set_get_integer
Keywords: get information; set information
GAMS: G4fRetrieve or write a piece of real information in a problem handle initialized by
e04rac Names: e04rxc; nag_opt_handle_set_get_real
Keywords: get information; set information
GAMS: G4fRetrieve or write a piece of real information in a problem handle initialized by
e04raf Names: e04rxf; nagf_opt_handle_set_get_real
Keywords: get information; set information
GAMS: G4fLoad a problem from a file to a new handle for the NAG optimization modelling suite; supported formats: extended MPS, SDPA
Names: e04sac; nag_opt_handle_read_file
Keywords: conic; file input; linear matrix inequality; linear programming; LMI; LP, linear programming; matrix constraints; MPSX format; QP, quadratic programming; SDP; SDPA format; second-order cone programming; semidefinite programming; service routine; SOCP
GAMS: G4a
Load a problem from a file to a new handle for the NAG optimization modelling suite; supported formats: extended MPS, SDPA
Names: e04saf; nagf_opt_handle_read_file
Keywords: conic; file input; linear matrix inequality; linear programming; LMI; LP, linear programming; matrix constraints; MPSX format; QP, quadratic programming; SDP; SDPA format; second-order cone programming; semidefinite programming; service routine; SOCP
GAMS: G4a
Active-set sequential quadratic programming (SQP) method for sparse nonlinear programming (NLP) problems
Names: e04src; nag_opt_handle_solve_ssqp
Keywords: maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization; sequential quadratic programming; SQP
GAMS: G4d, G2e2, G2h3b
Active-set sequential quadratic programming (SQP) method for sparse nonlinear programming (NLP) problems
Names: e04srf; nagf_opt_handle_solve_ssqp
Keywords: maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization; sequential quadratic programming; SQP
GAMS: G4d, G2e2, G2h3b
Interior point method (IPM) for sparse nonlinear programming (NLP) problems
Names: e04stc; nag_opt_handle_solve_ipopt
Keywords: interior point method; IPM; IPOPT; least squares fitting; maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization
GAMS: G4d, G2e2, G2h3b
Interior point method (IPM) for sparse nonlinear programming (NLP) problems
Names: e04stf; nag_opt_handle_solve_ipopt
Keywords: interior point method; IPM; IPOPT; least squares fitting; maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization
GAMS: G4d, G2e2, G2h3b
Solver for semidefinite programming (SDP) problems and SDP with bilinear matrix inequalities (BMI)
Names: e04svc; nag_opt_handle_solve_pennon
Keywords: bilinear matrix inequality; BMI; generalized augmented Lagrangian method; Lagrangian; least squares fitting; linear matrix inequality; LMI; matrix constraints; maximization; minimizing or maximizing a function; monitoring information; optimization; SDP; semidefinite programming
GAMS: G4d, G2h3b
Solver for semidefinite programming (SDP) problems and SDP with bilinear matrix inequalities (BMI)
Names: e04svf; nagf_opt_handle_solve_pennon
Keywords: bilinear matrix inequality; BMI; generalized augmented Lagrangian method; Lagrangian; least squares fitting; linear matrix inequality; LMI; matrix constraints; maximization; minimizing or maximizing a function; monitoring information; optimization; SDP; semidefinite programming
GAMS: G4d, G2h3b
Enable components of the model which were previously disabled by
e04tcc Names: e04tbc; nag_opt_handle_enable
Keywords: enable component; least squares fitting; maximization; minimizing or maximizing a function; optimization
GAMS: G4fEnable components of the model which were previously disabled by
e04tcf Names: e04tbf; nagf_opt_handle_enable
Keywords: enable component; least squares fitting; maximization; minimizing or maximizing a function; optimization
GAMS: G4fDisable components in the problem initialized by
e04rac Names: e04tcc; nag_opt_handle_disable
Keywords: delete component; disable component; least squares fitting; maximization; minimizing or maximizing a function; optimization; remove component
GAMS: G4fDisable components in the problem initialized by
e04raf Names: e04tcf; nagf_opt_handle_disable
Keywords: delete component; disable component; least squares fitting; maximization; minimizing or maximizing a function; optimization; remove component
GAMS: G4fNonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04uca; nagf_opt_nlp1_solve
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04ucf; nagf_opt_nlp1_solve_old
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set, SQP method, using function values and optionally first derivatives (reverse communication, comprehensive)
Names: e04ufc; nag_opt_nlp_revcomm
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set, SQP method, using function values and optionally first derivatives (reverse communication, comprehensive)
Names: e04ufa; nagf_opt_nlp1_rcomm
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set, SQP method, using function values and optionally first derivatives (reverse communication, comprehensive)
Names: e04uff; nagf_opt_nlp1_rcomm_old
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives
Names: e04uga; nagf_opt_nlp1_sparse_solve
Keywords: finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives
Names: e04ugf; nagf_opt_nlp1_sparse_solve_old
Keywords: finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Minimum of a sum of squares, nonlinear constraints, dense, active-set SQP method, using function values and optionally first derivatives
Names: e04usa; nagf_opt_lsq_gencon_deriv
Keywords: data fitting; finance; minimization, nonlinear constraints; NLP; nonlinear least squares; nonlinear programming; quasi-Newton approximation; sequential QP method; sum of squares
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3b1a, G2h3a1, G2h3b1b, G4d, K1b2b, L8e1b2
Minimum of a sum of squares, nonlinear constraints, dense, active-set SQP method, using function values and optionally first derivatives
Names: e04usf; nagf_opt_lsq_gencon_deriv_old
Keywords: data fitting; finance; minimization, nonlinear constraints; NLP; nonlinear least squares; nonlinear programming; quasi-Newton approximation; sequential QP method; sum of squares
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3b1a, G2h3a1, G2h3b1b, G4d, K1b2b, L8e1b2
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04vhc; nag_opt_sparse_nlp_solve
Keywords: finance; LP, linear programming; minimization, nonlinear constraints; NLP; nonlinear programming; quasi-Newton algorithm; sequential QP method; simplex algorithm; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04vhf; nagf_opt_nlp2_sparse_solve
Keywords: finance; LP, linear programming; minimization, nonlinear constraints; NLP; nonlinear programming; quasi-Newton algorithm; sequential QP method; simplex algorithm; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Determine the pattern of nonzeros in the Jacobian matrix for
e04vhc Names: e04vjc; nag_opt_sparse_nlp_jacobian
Keywords: finance; minimization, nonlinear constraints; sparsity structure; SQP
GAMS: G4fDetermine the pattern of nonzeros in the Jacobian matrix for
e04vhf Names: e04vjf; nagf_opt_nlp2_sparse_jacobian
Keywords: finance; minimization, nonlinear constraints; sparsity structure; SQP
GAMS: G4fNonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives
Names: e04wdc; nag_opt_nlp_solve
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives
Names: e04wdf; nagf_opt_nlp2_solve
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Check user's routine for calculating Jacobian of first derivatives
Names: e04yaf; nagf_opt_lsq_check_deriv
Keywords: finance; Jacobian estimation; service routine
GAMS: G4c
Check user's routine for calculating Hessian of a sum of squares
Names: e04ybf; nagf_opt_lsq_check_hessian
Keywords: finance; Hessian estimation; service routine
GAMS: G4c
Covariance matrix for nonlinear least squares problem (unconstrained)
Names: e04ycf; nagf_opt_lsq_uncon_covariance
Keywords: covariance matrix; nonlinear least squares; service routine
GAMS: L8e1b
Initialization routine for
e05jbc Names: e05jac; nag_glopt_bnd_mcs_init
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fInitialization routine for
e05jbf Names: e05jaf; nagf_glopt_bnd_mcs_init
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fGlobal optimization by multi-level coordinate search, simple bounds, using function values only
Names: e05jbc; nag_glopt_bnd_mcs_solve
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Global optimization by multi-level coordinate search, simple bounds, using function values only
Names: e05jbf; nagf_glopt_bnd_mcs_solve
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Supply optional parameter values for
e05jbc from external file
Names: e05jcc; nag_glopt_bnd_mcs_optset_file
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSupply optional parameter values for
e05jbf from external file
Names: e05jcf; nagf_glopt_bnd_mcs_optset_file
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbc from a character string
Names: e05jdc; nag_glopt_bnd_mcs_optset_string
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbf from a character string
Names: e05jdf; nagf_glopt_bnd_mcs_optset_string
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbc from an ‘ON’/‘OFF’-valued character argument
Names: e05jec; nag_glopt_bnd_mcs_optset_char
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbf from an ‘ON’/‘OFF’-valued character argument
Names: e05jef; nagf_glopt_bnd_mcs_optset_char
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbc from an integer argument
Names: e05jfc; nag_glopt_bnd_mcs_optset_int
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbf from an integer argument
Names: e05jff; nagf_glopt_bnd_mcs_optset_int
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbc from a real argument
Names: e05jgc; nag_glopt_bnd_mcs_optset_real
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fSet a single optional parameter for
e05jbf from a real argument
Names: e05jgf; nagf_glopt_bnd_mcs_optset_real
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4fBound-constrained global optimization by multi-level coordinate search, using function values only
Names: e05kbc; nag_glopt_handle_solve_mcs
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Bound-constrained global optimization by multi-level coordinate search, using function values only
Names: e05kbf; nagf_glopt_handle_solve_mcs
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Global optimization using particle swarm algorithm (PSO), bound constraints only
Names: e05sac; nag_glopt_bnd_pso
Keywords: minimization, simple bound constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G1b2
Global optimization using particle swarm algorithm (PSO), bound constraints only
Names: e05saf; nagf_glopt_bnd_pso
Keywords: minimization, simple bound constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G1b2
Global optimization using particle swarm algorithm (PSO), comprehensive
Names: e05sbc; nag_glopt_nlp_pso
Keywords: minimization, nonlinear constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G2h3b2
Global optimization using particle swarm algorithm (PSO), comprehensive
Names: e05sbf; nagf_glopt_nlp_pso
Keywords: minimization, nonlinear constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G2h3b2
Global optimization using multi-start, nonlinear constraints
Names: e05ucc; nag_glopt_nlp_multistart_sqp
Keywords: finance; minimization, nonlinear constraints; multi-start algorithm; sequential QP method
GAMS: G2i
Global optimization using multi-start, nonlinear constraints
Names: e05ucf; nagf_glopt_nlp_multistart_sqp
Keywords: finance; minimization, nonlinear constraints; multi-start algorithm; sequential QP method
GAMS: G2i
Global optimization of a sum of squares problem using multi-start, nonlinear constraints
Names: e05usc; nag_glopt_nlp_multistart_sqp_lsq
Keywords: finance; multi-start algorithm; sequential QP method; sum of squares
GAMS: G2i
Global optimization of a sum of squares problem using multi-start, nonlinear constraints
Names: e05usf; nagf_glopt_nlp_multistart_sqp_lsq
Keywords: finance; multi-start algorithm; sequential QP method; sum of squares
GAMS: G2i
Option setting routine for
e05sac,
e05sbc,
e05ucc and
e05usc Names: e05zkc; nag_glopt_opt_set
Keywords: options, computational
GAMS: G4fOption setting routine for
e05saf,
e05sbf,
e05ucf and
e05usf Names: e05zkf; nagf_glopt_optset
Keywords: options, computational
GAMS: G4fInverse of real symmetric positive definite matrix using iterative refinement
Names: f01abf; nagf_matop_real_symm_posdef_inv
Keywords: inverse, matrix; matrix inverse; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix
Names: f01adf; nagf_matop_real_symm_posdef_inv_noref
Keywords: inverse, matrix; matrix inverse; real, positive definite, symmetric matrix
GAMS: D2b1b
Multiplication of real matrices
Names: f01ckf; nagf_matop_real_gen_matmul
Keywords: multiply, matrix; real, nonsymmetric matrix
GAMS: D1b6
Sum or difference of two real matrices, optional scaling and transposition
Names: f01ctf; nagf_matop_real_addsub
Keywords: real, nonsymmetric matrix; sum, matrix; transpose, matrix
GAMS: D1b3, D1b5
Sum or difference of two complex matrices, optional scaling and transposition
Names: f01cwf; nagf_matop_complex_addsub
Keywords: complex, nonsymmetric matrix; sum, matrix; transpose, matrix
GAMS: D1b3, D1b5
Matrix-matrix product, two real triangular matrices, update third matrix
Names: f01dfc; nag_matop_real_tri_matmul
Keywords: multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, two real triangular matrices, update third matrix
Names: f01dff; nagf_matop_real_tri_matmul
Keywords: multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, two real lower or upper triangular matrices
Names: f01dgc; nag_matop_real_tri_matmul_inplace
Keywords: multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Matrix-matrix product, two real lower or upper triangular matrices
Names: f01dgf; nagf_matop_real_tri_matmul_inplace
Keywords: multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Matrix-matrix product, two complex triangular matrices, update third matrix
Names: f01dtc; nag_matop_complex_tri_matmul
Keywords: complex, m×n matrix; multiply, matrix
GAMS: D1b6
Matrix-matrix product, two complex triangular matrices, update third matrix
Names: f01dtf; nagf_matop_complex_tri_matmul
Keywords: complex, m×n matrix; multiply, matrix
GAMS: D1b6
Matrix-matrix product, two complex lower or upper triangular matrices
Names: f01duc; nag_matop_complex_tri_matmul_inplace
Keywords: complex, m×n matrix; complex, triangular matrix; multiply, matrix
GAMS: D1b6
Matrix-matrix product, two complex lower or upper triangular matrices
Names: f01duf; nagf_matop_complex_tri_matmul_inplace
Keywords: complex, m×n matrix; complex, triangular matrix; multiply, matrix
GAMS: D1b6
Real matrix exponential
Names: f01ecc; nag_real_gen_matrix_exp
Keywords: exponential, matrix; matrix exponential; real, nonsymmetric matrix
GAMS: D8
Real matrix exponential
Names: f01ecf; nagf_matop_real_gen_matrix_exp
Keywords: exponential, matrix; matrix exponential; real, nonsymmetric matrix
GAMS: D8
Real symmetric matrix exponential
Names: f01edc; nag_real_symm_matrix_exp
Keywords: exponential, matrix; finance; matrix exponential; real, indefinite, symmetric matrix
GAMS: D8
Real symmetric matrix exponential
Names: f01edf; nagf_matop_real_symm_matrix_exp
Keywords: exponential, matrix; finance; matrix exponential; real, indefinite, symmetric matrix
GAMS: D8
Function of a real symmetric matrix
Names: f01efc; nag_matop_real_symm_matrix_fun
Keywords: finance; functions, matrix; matrix functions; real, indefinite, symmetric matrix
GAMS: D8
Function of a real symmetric matrix
Names: f01eff; nagf_matop_real_symm_matrix_fun
Keywords: finance; functions, matrix; matrix functions; real, indefinite, symmetric matrix
GAMS: D8
Real matrix logarithm
Names: f01ejc; nag_matop_real_gen_matrix_log
Keywords: logarithm, matrix; matrix logarithm; real, nonsymmetric matrix
GAMS: D8
Real matrix logarithm
Names: f01ejf; nagf_matop_real_gen_matrix_log
Keywords: logarithm, matrix; matrix logarithm; real, nonsymmetric matrix
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a real matrix (Schur–Parlett algorithm)
Names: f01ekc; nag_matop_real_gen_matrix_fun_std
Keywords: cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a real matrix (Schur–Parlett algorithm)
Names: f01ekf; nagf_matop_real_gen_matrix_fun_std
Keywords: cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Function of a real matrix (using numerical differentiation)
Names: f01elc; nag_matop_real_gen_matrix_fun_num
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Function of a real matrix (using numerical differentiation)
Names: f01elf; nagf_matop_real_gen_matrix_fun_num
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Function of a real matrix (using user-supplied derivatives)
Names: f01emc; nag_matop_real_gen_matrix_fun_usd
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Function of a real matrix (using user-supplied derivatives)
Names: f01emf; nagf_matop_real_gen_matrix_fun_usd
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Real matrix square root
Names: f01enc; nag_matop_real_gen_matrix_sqrt
Keywords: real, nonsymmetric matrix
GAMS: D8
Real matrix square root
Names: f01enf; nagf_matop_real_gen_matrix_sqrt
Keywords: real, nonsymmetric matrix
GAMS: D8
Real upper quasi-triangular matrix square root
Names: f01epc; nag_matop_real_tri_matrix_sqrt
Keywords: real, quasi-triangular matrix
GAMS: D8
Real upper quasi-triangular matrix square root
Names: f01epf; nagf_matop_real_tri_matrix_sqrt
Keywords: real, quasi-triangular matrix
GAMS: D8
General power of a real matrix
Names: f01eqc; nag_matop_real_gen_matrix_pow
Keywords: general power; matrix operations including inversion
GAMS: D8
General power of a real matrix
Names: f01eqf; nagf_matop_real_gen_matrix_pow
Keywords: general power; matrix operations including inversion
GAMS: D8
Complex matrix exponential
Names: f01fcc; nag_matop_complex_gen_matrix_exp
Keywords: complex, nonsymmetric matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Complex matrix exponential
Names: f01fcf; nagf_matop_complex_gen_matrix_exp
Keywords: complex, nonsymmetric matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Complex Hermitian matrix exponential
Names: f01fdc; nag_matop_complex_herm_matrix_exp
Keywords: complex, Hermitian, indefinite matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Complex Hermitian matrix exponential
Names: f01fdf; nagf_matop_complex_herm_matrix_exp
Keywords: complex, Hermitian, indefinite matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Function of a complex Hermitian matrix
Names: f01ffc; nag_matop_complex_herm_matrix_fun
Keywords: complex, Hermitian, indefinite matrix; finance; functions, matrix; matrix functions
GAMS: D8
Function of a complex Hermitian matrix
Names: f01fff; nagf_matop_complex_herm_matrix_fun
Keywords: complex, Hermitian, indefinite matrix; finance; functions, matrix; matrix functions
GAMS: D8
Complex matrix logarithm
Names: f01fjc; nag_matop_complex_gen_matrix_log
Keywords: complex, nonsymmetric matrix; logarithm, matrix; matrix logarithm
GAMS: D8
Complex matrix logarithm
Names: f01fjf; nagf_matop_complex_gen_matrix_log
Keywords: complex, nonsymmetric matrix; logarithm, matrix; matrix logarithm
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a complex matrix (Schur–Parlett algorithm)
Names: f01fkc; nag_matop_complex_gen_matrix_fun_std
Keywords: complex, nonsymmetric matrix; cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; sine, matrix; sinh, matrix
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a complex matrix (Schur–Parlett algorithm)
Names: f01fkf; nagf_matop_complex_gen_matrix_fun_std
Keywords: complex, nonsymmetric matrix; cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; sine, matrix; sinh, matrix
GAMS: D8
Function of a complex matrix (using numerical differentiation)
Names: f01flc; nag_matop_complex_gen_matrix_fun_num
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Function of a complex matrix (using numerical differentiation)
Names: f01flf; nagf_matop_complex_gen_matrix_fun_num
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Function of a complex matrix (using user-supplied derivatives)
Names: f01fmc; nag_matop_complex_gen_matrix_fun_usd
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Function of a complex matrix (using user-supplied derivatives)
Names: f01fmf; nagf_matop_complex_gen_matrix_fun_usd
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Complex matrix square root
Names: f01fnc; nag_matop_complex_gen_matrix_sqrt
Keywords: complex, nonsymmetric matrix
GAMS: D8
Complex matrix square root
Names: f01fnf; nagf_matop_complex_gen_matrix_sqrt
Keywords: complex, nonsymmetric matrix
GAMS: D8
Complex upper triangular matrix square root
Names: f01fpc; nag_matop_complex_tri_matrix_sqrt
Keywords: complex, triangular matrix
GAMS: D8
Complex upper triangular matrix square root
Names: f01fpf; nagf_matop_complex_tri_matrix_sqrt
Keywords: complex, triangular matrix
GAMS: D8
General power of a complex matrix
Names: f01fqc; nag_matop_complex_gen_matrix_pow
Keywords: eigenvalues and eigenvectors; general power; matrix operations including inversion
GAMS: D8
General power of a complex matrix
Names: f01fqf; nagf_matop_complex_gen_matrix_pow
Keywords: eigenvalues and eigenvectors; general power; matrix operations including inversion
GAMS: D8
Action of a real matrix exponential on a real matrix
Names: f01gac; nag_matop_real_gen_matrix_actexp
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a real matrix exponential on a real matrix
Names: f01gaf; nagf_matop_real_gen_matrix_actexp
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a real matrix exponential on a real matrix (reverse communication)
Names: f01gbc; nag_matop_real_gen_matrix_actexp_rcomm
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a real matrix exponential on a real matrix (reverse communication)
Names: f01gbf; nagf_matop_real_gen_matrix_actexp_rcomm
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a complex matrix exponential on a complex matrix
Names: f01hac; nag_matop_complex_gen_matrix_actexp
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Action of a complex matrix exponential on a complex matrix
Names: f01haf; nagf_matop_complex_gen_matrix_actexp
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Action of a complex matrix exponential on a complex matrix (reverse communication)
Names: f01hbc; nag_matop_complex_gen_matrix_actexp_rcomm
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Action of a complex matrix exponential on a complex matrix (reverse communication)
Names: f01hbf; nagf_matop_complex_gen_matrix_actexp_rcomm
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a real matrix
Names: f01jac; nag_matop_real_gen_matrix_cond_std
Keywords: condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a real matrix
Names: f01jaf; nagf_matop_real_gen_matrix_cond_std
Keywords: condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for a function of a real matrix (using numerical differentiation)
Names: f01jbc; nag_matop_real_gen_matrix_cond_num
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for a function of a real matrix (using numerical differentiation)
Names: f01jbf; nagf_matop_real_gen_matrix_cond_num
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for a function of a real matrix (using user-supplied derivatives)
Names: f01jcc; nag_matop_real_gen_matrix_cond_usd
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for a function of a real matrix (using user-supplied derivatives)
Names: f01jcf; nagf_matop_real_gen_matrix_cond_usd
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for square root of real matrix
Names: f01jdc; nag_matop_real_gen_matrix_cond_sqrt
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for square root of real matrix
Names: f01jdf; nagf_matop_real_gen_matrix_cond_sqrt
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix power
Names: f01jec; nag_matop_real_gen_matrix_cond_pow
Keywords: condition number; matrix operations including inversion
GAMS: D8
Condition number for real matrix power
Names: f01jef; nagf_matop_real_gen_matrix_cond_pow
Keywords: condition number; matrix operations including inversion
GAMS: D8
Fréchet derivative of real matrix power
Names: f01jfc; nag_matop_real_gen_matrix_frcht_pow
Keywords: Fréchet derivative; matrix operations including inversion
GAMS: D8
Fréchet derivative of real matrix power
Names: f01jff; nagf_matop_real_gen_matrix_frcht_pow
Keywords: Fréchet derivative; matrix operations including inversion
GAMS: D8
Condition number for real matrix exponential
Names: f01jgc; nag_matop_real_gen_matrix_cond_exp
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix exponential
Names: f01jgf; nagf_matop_real_gen_matrix_cond_exp
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix exponential
Names: f01jhc; nag_matop_real_gen_matrix_frcht_exp
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix exponential
Names: f01jhf; nagf_matop_real_gen_matrix_frcht_exp
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix logarithm
Names: f01jjc; nag_matop_real_gen_matrix_cond_log
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix logarithm
Names: f01jjf; nagf_matop_real_gen_matrix_cond_log
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix logarithm
Names: f01jkc; nag_matop_real_gen_matrix_frcht_log
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix logarithm
Names: f01jkf; nagf_matop_real_gen_matrix_frcht_log
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a complex matrix
Names: f01kac; nag_matop_complex_gen_matrix_cond_std
Keywords: complex, nonsymmetric matrix; condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a complex matrix
Names: f01kaf; nagf_matop_complex_gen_matrix_cond_std
Keywords: complex, nonsymmetric matrix; condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for a function of a complex matrix (using numerical differentiation)
Names: f01kbc; nag_matop_complex_gen_matrix_cond_num
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for a function of a complex matrix (using numerical differentiation)
Names: f01kbf; nagf_matop_complex_gen_matrix_cond_num
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for a function of a complex matrix (using user-supplied derivatives)
Names: f01kcc; nag_matop_complex_gen_matrix_cond_usd
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for a function of a complex matrix (using user-supplied derivatives)
Names: f01kcf; nagf_matop_complex_gen_matrix_cond_usd
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for square root of complex matrix
Names: f01kdc; nag_matop_complex_gen_matrix_cond_sqrt
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for square root of complex matrix
Names: f01kdf; nagf_matop_complex_gen_matrix_cond_sqrt
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for complex matrix power
Names: f01kec; nag_matop_complex_gen_matrix_cond_pow
Keywords: condition number; eigenvalues and eigenvectors; matrix operations including inversion
GAMS: D8
Condition number for complex matrix power
Names: f01kef; nagf_matop_complex_gen_matrix_cond_pow
Keywords: condition number; eigenvalues and eigenvectors; matrix operations including inversion
GAMS: D8
Fréchet derivative of complex matrix power
Names: f01kfc; nag_matop_complex_gen_matrix_frcht_pow
Keywords: eigenvalues and eigenvectors; Fréchet derivative; matrix operations including inversion
GAMS: D8
Fréchet derivative of complex matrix power
Names: f01kff; nagf_matop_complex_gen_matrix_frcht_pow
Keywords: eigenvalues and eigenvectors; Fréchet derivative; matrix operations including inversion
GAMS: D8
Condition number for complex matrix exponential
Names: f01kgc; nag_matop_complex_gen_matrix_cond_exp
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for complex matrix exponential
Names: f01kgf; nagf_matop_complex_gen_matrix_cond_exp
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Fréchet derivative of complex matrix exponential
Names: f01khc; nag_matop_complex_gen_matrix_frcht_exp
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
Fréchet derivative of complex matrix exponential
Names: f01khf; nagf_matop_complex_gen_matrix_frcht_exp
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
Condition number for complex matrix logarithm
Names: f01kjc; nag_matop_complex_gen_matrix_cond_log
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for complex matrix logarithm
Names: f01kjf; nagf_matop_complex_gen_matrix_cond_log
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Fréchet derivative of complex matrix logarithm
Names: f01kkc; nag_matop_complex_gen_matrix_frcht_log
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
Fréchet derivative of complex matrix logarithm
Names: f01kkf; nagf_matop_complex_gen_matrix_frcht_log
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
LU factorization of real tridiagonal matrix
Names: f01lef; nagf_matop_real_gen_tridiag_lu
Keywords: complex, nonsymmetric matrix; LU decomposition; matrix, band
GAMS: D2a2a
LU factorization of real almost block diagonal matrix
Names: f01lhf; nagf_matop_real_gen_blkdiag_lu
Keywords: LU decomposition; real, almost block-diagonal matrix
GAMS: D2a2
Computes the modified Cholesky factorization of a real symmetric matrix
Names: f01mdc; nag_matop_real_modified_cholesky
Keywords: Cheng–Higham factorization; modified Cholesky; real, symmetric matrix
GAMS: D2b1a
Computes the modified Cholesky factorization of a real symmetric matrix
Names: f01mdf; nagf_matop_real_modified_cholesky
Keywords: Cheng–Higham factorization; modified Cholesky; real, symmetric matrix
GAMS: D2b1a
Computes the positive definite perturbed matrix A+E from the factors of a modified Cholesky factorization of a real symmetric matrix
Names: f01mec; nag_matop_real_mod_chol_perturbed_a
Keywords: positive definite perturbed matrix; real, symmetric matrix
GAMS: D2b1a
Computes the positive definite perturbed matrix A+E from the factors of a modified Cholesky factorization of a real symmetric matrix
Names: f01mef; nagf_matop_real_mod_chol_perturbed_a
Keywords: positive definite perturbed matrix; real, symmetric matrix
GAMS: D2b1a
RQ factorization of real m×n upper trapezoidal matrix (m≤n)
Names: f01qgf; nagf_matop_real_trapez_rq
Keywords: real, trapezoidal matrix; RQ factorizations
GAMS: D5
RQ factorization of real m×n matrix (m≤n)
Names: f01qjf; nagf_matop_real_gen_rq
Keywords: real, m×n matrix; RQ factorizations
GAMS: D5
Operations with orthogonal matrices, form rows of
Q, after
RQ factorization by
f01qjf Names: f01qkf; nagf_matop_real_gen_rq_formq
Keywords: RQ factorizations
GAMS: D5RQ factorization of complex m×n upper trapezoidal matrix (m≤n)
Names: f01rgf; nagf_matop_complex_trapez_rq
Keywords: complex, trapezoidal matrix; RQ factorizations
GAMS: D5
RQ factorization of complex m×n matrix (m≤n)
Names: f01rjf; nagf_matop_complex_gen_rq
Keywords: complex, m×n matrix; RQ factorizations
GAMS: D5
Operations with unitary matrices, form rows of
Q, after
RQ factorization by
f01rjf Names: f01rkf; nagf_matop_complex_gen_rq_formq
Keywords: RQ factorizations
GAMS: D5Non-negative matrix factorization of real non-negative matrix
Names: f01sac; nag_matop_real_nmf
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Non-negative matrix factorization of real non-negative matrix
Names: f01saf; nagf_matop_real_nmf
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Non-negative matrix factorization of real non-negative matrix (reverse communication)
Names: f01sbc; nag_matop_real_nmf_rcomm
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Non-negative matrix factorization of real non-negative matrix (reverse communication)
Names: f01sbf; nagf_matop_real_nmf_rcomm
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Computes selected eigenvalues and eigenvectors of a real general matrix
Names: f02ecc; nag_real_eigensystem_sel
Keywords: real, nonsymmetric matrix
GAMS: D4a2
Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black Box)
Names: f02ecf; nagf_eigen_real_gen_eigsys
Keywords: real, nonsymmetric matrix
GAMS: D4a2
Selected eigenvalues and eigenvectors of a real sparse general matrix
Names: f02ekc; nag_eigen_real_gen_sparse_arnoldi
Keywords: large scale eigenproblems; matrix, sparse; real, sparse matrix
GAMS: D4a7, D4a2
Selected eigenvalues and eigenvectors of a real sparse general matrix
Names: f02ekf; nagf_eigen_real_gen_sparse_arnoldi
Keywords: large scale eigenproblems; matrix, sparse; real, sparse matrix
GAMS: D4a7, D4a2
Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
Names: f02fjf; nagf_eigen_real_symm_sparse_eigsys
Keywords: matrix, sparse; real, sparse, symmetric matrix
GAMS: D4a7, D4b1
Selected eigenvalues and eigenvectors of a real symmetric sparse matrix
Names: f02fkc; nag_eigen_real_symm_sparse_arnoldi
Keywords: eigenproblem; eigenvalues; eigenvectors; large scale eigenproblems; matrix, sparse; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7, D4a1
Selected eigenvalues and eigenvectors of a real symmetric sparse matrix
Names: f02fkf; nagf_eigen_real_symm_sparse_arnoldi
Keywords: eigenproblem; eigenvalues; eigenvectors; large scale eigenproblems; matrix, sparse; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7, D4a1
Computes selected eigenvalues and eigenvectors of a complex general matrix
Names: f02gcc; nag_complex_eigensystem_sel
Keywords: complex, nonsymmetric matrix
GAMS: D4a4
Selected eigenvalues and eigenvectors of complex nonsymmetric matrix (Black Box)
Names: f02gcf; nagf_eigen_complex_gen_eigsys
Keywords: complex, nonsymmetric matrix
GAMS: D4a4
Solves the quadratic eigenvalue problem for real matrices
Names: f02jcc; nag_eigen_real_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b2
Solves the quadratic eigenvalue problem for real matrices
Names: f02jcf; nagf_eigen_real_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b2
Solves the quadratic eigenvalue problem for complex matrices
Names: f02jqc; nag_eigen_complex_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b4
Solves the quadratic eigenvalue problem for complex matrices
Names: f02jqf; nagf_eigen_complex_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b4
Computes leading terms in the singular value decomposition of a real general matrix; also computes corresponding left and right singular vectors
Names: f02wgc; nag_real_partial_svd
Keywords: real, m×n matrix; SVD, singular value decomposition
GAMS: D6
Computes leading terms in the singular value decomposition of a real general matrix; also computes corresponding left and right singular vectors
Names: f02wgf; nagf_eigen_real_gen_partialsvd
Keywords: real, m×n matrix; SVD, singular value decomposition
GAMS: D6
SVD of real upper triangular matrix (Black Box)
Names: f02wuf; nagf_eigen_real_triang_svd
Keywords: real, triangular matrix; SVD, singular value decomposition
GAMS: D6
SVD of complex upper triangular matrix (Black Box)
Names: f02xuf; nagf_eigen_complex_triang_svd
Keywords: complex, triangular matrix; SVD, singular value decomposition
GAMS: D6
Least squares solution of m real equations in n unknowns, rank =n, m≥n using iterative refinement (Black Box)
Names: f04amf; nagf_linsys_real_gen_lsqsol
Keywords: linear equations, overdetermined; linear least squares; real, m×n matrix
GAMS: D9a1
Computes the solution, estimated condition number and error-bound to a real system of linear equations
Names: f04bac; nag_real_gen_lin_solve
Keywords: forward error; linear equations; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution, estimated condition number and error-bound to a real system of linear equations
Names: f04baf; nagf_linsys_real_square_solve
Keywords: forward error; linear equations; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution, estimated condition number and error-bound to a real banded system of linear equations
Names: f04bbc; nag_real_band_lin_solve
Keywords: forward error; linear equations; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution, estimated condition number and error-bound to a real banded system of linear equations
Names: f04bbf; nagf_linsys_real_band_solve
Keywords: forward error; linear equations; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution, estimated condition number and error-bound to a real tridiagonal system of linear equations
Names: f04bcc; nag_real_tridiag_lin_solve
Keywords: forward error; linear equations; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Computes the solution, estimated condition number and error-bound to a real tridiagonal system of linear equations
Names: f04bcf; nagf_linsys_real_tridiag_solve
Keywords: forward error; linear equations; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations
Names: f04bdc; nag_real_sym_posdef_lin_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations
Names: f04bdf; nagf_linsys_real_posdef_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations, packed storage
Names: f04bec; nag_real_sym_posdef_packed_lin_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations, packed storage
Names: f04bef; nagf_linsys_real_posdef_packed_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite banded system of linear equations
Names: f04bfc; nag_real_sym_posdef_band_lin_solve
Keywords: forward error; linear equations; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite banded system of linear equations
Names: f04bff; nagf_linsys_real_posdef_band_solve
Keywords: forward error; linear equations; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite tridiagonal system of linear equations
Names: f04bgc; nag_real_sym_posdef_tridiag_lin_solve
Keywords: forward error; linear equations; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite tridiagonal system of linear equations
Names: f04bgf; nagf_linsys_real_posdef_tridiag_solve
Keywords: forward error; linear equations; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations
Names: f04bhc; nag_real_sym_lin_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations
Names: f04bhf; nagf_linsys_real_symm_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations, packed storage
Names: f04bjc; nag_real_sym_packed_lin_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations, packed storage
Names: f04bjf; nagf_linsys_real_symm_packed_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a complex system of linear equations
Names: f04cac; nag_complex_gen_lin_solve
Keywords: complex, nonsymmetric matrix; forward error; linear equations
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex system of linear equations
Names: f04caf; nagf_linsys_complex_square_solve
Keywords: complex, nonsymmetric matrix; forward error; linear equations
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex banded system of linear equations
Names: f04cbc; nag_complex_band_lin_solve
Keywords: complex, band matrix; forward error; linear equations; matrix, band
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex banded system of linear equations
Names: f04cbf; nagf_linsys_complex_band_solve
Keywords: complex, band matrix; forward error; linear equations; matrix, band
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex tridiagonal system of linear equations
Names: f04ccc; nag_complex_tridiag_lin_solve
Keywords: complex, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2c2a
Computes the solution, estimated condition number and error-bound to a complex tridiagonal system of linear equations
Names: f04ccf; nagf_linsys_complex_tridiag_solve
Keywords: complex, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2c2a
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations
Names: f04cdc; nag_herm_posdef_lin_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations
Names: f04cdf; nagf_linsys_complex_posdef_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations, packed storage
Names: f04cec; nag_herm_posdef_packed_lin_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations, packed storage
Names: f04cef; nagf_linsys_complex_posdef_packed_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite banded system of linear equations
Names: f04cfc; nag_herm_posdef_band_lin_solve
Keywords: complex, band, Hermitian, positive definite matrix; forward error; linear equations; matrix, band
GAMS: D2d2
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite banded system of linear equations
Names: f04cff; nagf_linsys_complex_posdef_band_solve
Keywords: complex, band, Hermitian, positive definite matrix; forward error; linear equations; matrix, band
GAMS: D2d2
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f04cgc; nag_herm_posdef_tridiag_lin_solve
Keywords: complex, Hermitian, positive definite, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2d2a
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f04cgf; nagf_linsys_complex_posdef_tridiag_solve
Keywords: complex, Hermitian, positive definite, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2d2a
Computes the solution and error-bound to a complex Hermitian system of linear equations
Names: f04chc; nag_herm_lin_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution and error-bound to a complex Hermitian system of linear equations
Names: f04chf; nagf_linsys_complex_herm_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution, estimated condition number and error-bound to a complex Hermitian system of linear equations, packed storage
Names: f04cjc; nag_herm_packed_lin_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution, estimated condition number and error-bound to a complex Hermitian system of linear equations, packed storage
Names: f04cjf; nagf_linsys_complex_herm_packed_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations
Names: f04dhc; nag_complex_sym_lin_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations
Names: f04dhf; nagf_linsys_complex_symm_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations, packed storage
Names: f04djc; nag_complex_sym_packed_lin_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations, packed storage
Names: f04djf; nagf_linsys_complex_symm_packed_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Solution of the Yule–Walker equations for real symmetric positive definite Toeplitz matrix, one right-hand side
Names: f04fef; nagf_linsys_real_toeplitz_yule
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix; Yule–Walker equations
GAMS: D2b1b
Solution of real symmetric positive definite Toeplitz system, one right-hand side
Names: f04fff; nagf_linsys_real_toeplitz_solve
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix
GAMS: D2b1b
Least squares (if rank =n) or minimal least squares (if rank <n) solution of m real equations in n unknowns, m≥n
Names: f04jgf; nagf_linsys_real_gen_solve
Keywords: linear equations, overdetermined; linear least squares; real, m×n matrix
GAMS: D9a1
Solution of real almost block diagonal simultaneous linear equations (coefficient matrix already factorized by
f01lhf)
Names: f04lhf; nagf_linsys_real_blkdiag_fac_solve
Keywords: linear equations; real, almost block-diagonal matrix
GAMS: D2a2Update solution of the Yule–Walker equations for real symmetric positive definite Toeplitz matrix
Names: f04mef; nagf_linsys_real_toeplitz_yule_update
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix; Yule–Walker equations
GAMS: D2b1b
Update solution of real symmetric positive definite Toeplitz system
Names: f04mff; nagf_linsys_real_toeplitz_update
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix
GAMS: D2b1b
Sparse linear least squares problem, m real equations in n unknowns
Names: f04qaf; nagf_linsys_real_gen_sparse_lsqsol
Keywords: least squares; matrix, sparse; real, m×n matrix; regression; ridge
GAMS: D2a4, D9a1
Covariance matrix for linear least squares problems, m real equations in n unknowns
Names: f04yaf; nagf_linsys_real_gen_lsq_covmat
Keywords: covariance matrix; least squares; real, m×n matrix
GAMS: D9a1
Norm estimation (for use in condition estimation), real rectangular matrix
Names: f04ydc; nag_linsys_real_gen_norm_rcomm
Keywords: 1-norm; norm, matrix; real, m×n matrix
GAMS: D1b2
Norm estimation (for use in condition estimation), real rectangular matrix
Names: f04ydf; nagf_linsys_real_gen_norm_rcomm
Keywords: 1-norm; norm, matrix; real, m×n matrix
GAMS: D1b2
Norm estimation (for use in condition estimation), complex rectangular matrix
Names: f04zdc; nag_linsys_complex_gen_norm_rcomm
Keywords: 1-norm; complex, m×n matrix; norm, matrix
GAMS: D1b2
Norm estimation (for use in condition estimation), complex rectangular matrix
Names: f04zdf; nagf_linsys_complex_gen_norm_rcomm
Keywords: 1-norm; complex, m×n matrix; norm, matrix
GAMS: D1b2
Gram–Schmidt orthogonalization of n vectors of order m
Names: f05aaf; nagf_orthog_real_gram_schmidt
Keywords: Gram–Schmidt orthogonalization
GAMS: D5
Compute cosine of angle between two real vectors
Names: f06faf; nagf_blas_dvcos
Keywords: elementary arithmetic
GAMS: D1a11
Multiply real vector by diagonal matrix
Names: f06fcf; nagf_blas_ddscl
Keywords: elementary arithmetic
GAMS: D1b6
Multiply real vector by reciprocal of scalar
Names: f06fec; nag_drscl
Keywords: elementary arithmetic
GAMS: D1a6
Multiply real vector by reciprocal of scalar
Names: f06fef; nagf_blas_drscl
Keywords: elementary arithmetic
GAMS: D1a6
Generate real elementary reflection, NAG style
Names: f06frf; nagf_blas_dnhousg
Keywords: elementary reflection
GAMS: D1a9
Generate real elementary reflection, LINPACK style
Names: f06fsf; nagf_blas_dlhousg
Keywords: elementary reflection
GAMS: D1a9
Apply real elementary reflection, NAG style
Names: f06ftf; nagf_blas_dnhous
Keywords: elementary reflection
GAMS: D1a9
Apply real elementary reflection, LINPACK style
Names: f06fuf; nagf_blas_dlhous
Keywords: elementary reflection
GAMS: D1a9
Multiply complex vector by complex diagonal matrix
Names: f06hcf; nagf_blas_zdscl
Keywords: elementary arithmetic
GAMS: D1b4
Generate complex elementary reflection
Names: f06hrf; nagf_blas_zhousg
Keywords: elementary reflection
GAMS: D1a9
Apply complex elementary reflection
Names: f06htf; nagf_blas_zhous
Keywords: elementary reflection
GAMS: D1a9
Multiply complex vector by real diagonal matrix
Names: f06kcf; nagf_blas_zddscl
Keywords: elementary arithmetic
GAMS: D1b4
Multiply complex vector by reciprocal of real scalar
Names: f06kec; nag_zrscl
Keywords: elementary arithmetic
GAMS: D1a6
Multiply complex vector by reciprocal of real scalar
Names: f06kef; nagf_blas_zdrscl
Keywords: elementary arithmetic
GAMS: D1a6
QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix
Names: f06qpf; nagf_blas_dutr1
Keywords: QR factorization; rank k matrix updates; real, triangular matrix; rotation, elementary
GAMS: D5
QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix
Names: f06tpf; nagf_blas_zutr1
Keywords: complex, triangular matrix; QR factorization; rank k matrix updates
GAMS: D5
QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix
Names: f06trf; nagf_blas_zuhqr
Keywords: complex, Hessenberg matrix; QR factorization; rotation, elementary; RQ factorizations
GAMS: D5
QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
Names: f06tsf; nagf_blas_zusqr
Keywords: complex, triangular matrix; QR factorization; rotation, elementary; RQ factorizations
GAMS: D5
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format
Names: f06wbf; nagf_blas_dtfsm; dtfsm
Keywords: BLAS; blas, real matrices; dtfsm; linear algebra support routines;; linear equations; real, triangular matrix
GAMS: D2a3
Rank-k update of a real symmetric matrix, Rectangular Full Packed format
Names: f06wcf; nagf_blas_dsfrk; dsfrk
Keywords: blas, real matrices; dsfrk; rank k matrix updates; real, indefinite, symmetric matrix
GAMS: D1b5
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format
Names: f06wpf; nagf_blas_ztfsm; ztfsm
Keywords: BLAS; blas, complex matrices; complex, triangular matrix; linear algebra support routines;; linear equations; ztfsm
GAMS: D2c3
Rank-k update of a complex Hermitian matrix, Rectangular Full Packed format
Names: f06wqf; nagf_blas_zhfrk; zhfrk
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; rank k matrix updates; zherk
GAMS: D1b5
Matrix-matrix product, two real rectangular matrices
Names: f06yaf; nagf_blas_dgemm; dgemm
Keywords: blas, real matrices; dgemm; finance; multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
Names: f06ycf; nagf_blas_dsymm; dsymm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, indefinite, symmetric matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, one real triangular matrix, one real rectangular matrix
Names: f06yff; nagf_blas_dtrmm; dtrmm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
Names: f06yjf; nagf_blas_dtrsm; dtrsm
Keywords: blas, real matrices; finance; linear equations; real, triangular matrix
GAMS: D1b6, D2a3
Rank-k update of a real symmetric matrix
Names: f06ypf; nagf_blas_dsyrk; dsyrk
Keywords: blas, real matrices; dsyrk; real, indefinite, symmetric matrix
GAMS: D1b6, D1b5
Rank-2k update of a real symmetric matrix
Names: f06yrf; nagf_blas_dsyr2k; dsyr2k
Keywords: blas, real matrices; dsyr2k; rank k matrix updates; real, indefinite, symmetric matrix
GAMS: D1b6
Matrix-matrix product, two complex rectangular matrices
Names: f06zaf; nagf_blas_zgemm; zgemm
Keywords: blas, complex matrices; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
Names: f06zcf; nagf_blas_zhemm; zhemm
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
Names: f06zff; nagf_blas_ztrmm; ztrmm
Keywords: blas, complex matrices; complex, m×n matrix; complex, triangular matrix; multiply, matrix; ztrmm
GAMS: D1b6
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
Names: f06zjf; nagf_blas_ztrsm; ztrsm
Keywords: blas, complex matrices; complex, triangular matrix; linear least squares; ztrsm
GAMS: D2c3
Rank-k update of a complex Hermitian matrix
Names: f06zpf; nagf_blas_zherk; zherk
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; rank k matrix updates; zherk
GAMS: D1b5
Rank-2k update of a complex Hermitian matrix
Names: f06zrf; nagf_blas_zher2k; zher2k
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; rank k matrix updates; zher2k
GAMS: D1b6, D1b5
Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
Names: f06ztf; nagf_blas_zsymm; zsymm
Keywords: blas, complex matrices; complex, m×n matrix; complex, symmetric matrix; multiply, matrix; zsymm
GAMS: D1b6
Rank-k update of a complex symmetric matrix
Names: f06zuf; nagf_blas_zsyrk; zsyrk
Keywords: blas, complex matrices; complex, symmetric matrix; rank k matrix updates; zher2k
GAMS: D1b5
Rank-2k update of a complex symmetric matrix
Names: f06zwf; nagf_blas_zsyr2k; zsyr2k
Keywords: blas, complex matrices; complex, symmetric matrix; rank k matrix updates; zsyr2k
GAMS: D1b5
Computes the solution to a real system of linear equations
Names: f07aac; nag_dgesv; dgesv
Keywords: DGESV; finance; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution to a real system of linear equations
Names: f07aaf; nagf_lapacklin_dgesv; dgesv
Keywords: DGESV; finance; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real system of linear equations
Names: f07abc; nag_dgesvx; dgesvx
Keywords: backward error; condition number, matrix; DGESVX; error bound, matrix; finance; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real system of linear equations
Names: f07abf; nagf_lapacklin_dgesvx; dgesvx
Keywords: backward error; condition number, matrix; DGESVX; error bound, matrix; finance; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution to a real system of linear equations using mixed precision arithmetic
Names: f07acc; nag_dsgesv; dsgesv
Keywords: DSGESV; mixed-precision; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution to a real system of linear equations using mixed precision arithmetic
Names: f07acf; nagf_lapacklin_dsgesv; dsgesv
Keywords: DSGESV; mixed-precision; real, nonsymmetric matrix
GAMS: D2a1
LU factorization of real m×n matrix
Names: f07adc; nag_dgetrf; dgetrf
Keywords: DGETRF; finance; LU decomposition; real, m×n matrix
GAMS: D2a1
LU factorization of real m×n matrix
Names: f07adf; nagf_lapacklin_dgetrf; dgetrf
Keywords: DGETRF; finance; LU decomposition; real, m×n matrix
GAMS: D2a1
Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by
f07adc Names: f07aec; nag_dgetrs; dgetrs
Keywords: DGETRS;
LU decomposition; real, nonsymmetric matrix
GAMS: D2a1Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by
f07adf Names: f07aef; nagf_lapacklin_dgetrs; dgetrs
Keywords: DGETRS;
LU decomposition; real, nonsymmetric matrix
GAMS: D2a1Estimate condition number of real matrix, matrix already factorized by
f07adc Names: f07agc; nag_dgecon; dgecon
Keywords: condition number, matrix; DGECON;
LU decomposition; real, nonsymmetric matrix
GAMS: D2a1Estimate condition number of real matrix, matrix already factorized by
f07adf Names: f07agf; nagf_lapacklin_dgecon; dgecon
Keywords: condition number, matrix; DGECON;
LU decomposition; real, nonsymmetric matrix
GAMS: D2a1Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f07ahc; nag_dgerfs; dgerfs
Keywords: backward error; DGERFS; error bound, matrix; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f07ahf; nagf_lapacklin_dgerfs; dgerfs
Keywords: backward error; DGERFS; error bound, matrix; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Inverse of real matrix, matrix already factorized by
f07adc Names: f07ajc; nag_dgetri; dgetri
Keywords: DGETRI; finance; inverse, matrix;
LU decomposition; real, nonsymmetric matrix
GAMS: D2a1Inverse of real matrix, matrix already factorized by
f07adf Names: f07ajf; nagf_lapacklin_dgetri; dgetri
Keywords: DGETRI; finance; inverse, matrix;
LU decomposition; real, nonsymmetric matrix
GAMS: D2a1Computes the solution to a complex system of linear equations
Names: f07anc; nag_zgesv; zgesv
Keywords: complex, nonsymmetric matrix; LU decomposition; ZGESV
GAMS: D2c1
Computes the solution to a complex system of linear equations
Names: f07anf; nagf_lapacklin_zgesv; zgesv
Keywords: complex, nonsymmetric matrix; LU decomposition; ZGESV
GAMS: D2c1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations
Names: f07apc; nag_zgesvx; zgesvx
Keywords: backward error; complex, nonsymmetric matrix; condition number, matrix; error bound, matrix; finance; forward error; LU decomposition; ZGESVX
GAMS: D2c1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations
Names: f07apf; nagf_lapacklin_zgesvx; zgesvx
Keywords: backward error; complex, nonsymmetric matrix; condition number, matrix; error bound, matrix; finance; forward error; LU decomposition; ZGESVX
GAMS: D2c1
Computes the solution to a complex system of linear equations using mixed precision arithmetic
Names: f07aqc; nag_zcgesv; zcgesv
Keywords: complex, nonsymmetric matrix; mixed-precision; ZCGESV
GAMS: D2c1
Computes the solution to a complex system of linear equations using mixed precision arithmetic
Names: f07aqf; nagf_lapacklin_zcgesv; zcgesv
Keywords: complex, nonsymmetric matrix; mixed-precision; ZCGESV
GAMS: D2c1
LU factorization of complex m×n matrix
Names: f07arc; nag_zgetrf; zgetrf
Keywords: complex, m×n matrix; finance; LU decomposition; ZGETRF
GAMS: D2c1
LU factorization of complex m×n matrix
Names: f07arf; nagf_lapacklin_zgetrf; zgetrf
Keywords: complex, m×n matrix; finance; LU decomposition; ZGETRF
GAMS: D2c1
Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by
f07arc Names: f07asc; nag_zgetrs; zgetrs
Keywords: complex, nonsymmetric matrix; finance;
LU decomposition; ZGETRS
GAMS: D2c1Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by
f07arf Names: f07asf; nagf_lapacklin_zgetrs; zgetrs
Keywords: complex, nonsymmetric matrix; finance;
LU decomposition; ZGETRS
GAMS: D2c1Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number
Names: f07atc; nag_zgeequ; zgeequ
Keywords: complex, nonsymmetric matrix; equilibration; scaling; ZGEEQU
GAMS: D2c1
Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number
Names: f07atf; nagf_lapacklin_zgeequ; zgeequ
Keywords: complex, nonsymmetric matrix; equilibration; scaling; ZGEEQU
GAMS: D2c1
Estimate condition number of complex matrix, matrix already factorized by
f07arc Names: f07auc; nag_zgecon; zgecon
Keywords: complex, nonsymmetric matrix; condition number, matrix; ZGECON
GAMS: D2c1Estimate condition number of complex matrix, matrix already factorized by
f07arf Names: f07auf; nagf_lapacklin_zgecon; zgecon
Keywords: complex, nonsymmetric matrix; condition number, matrix; ZGECON
GAMS: D2c1Refined solution with error bounds of complex system of linear equations, multiple right-hand sides
Names: f07avc; nag_zgerfs; zgerfs
Keywords: backward error; complex, nonsymmetric matrix; forward error; ZGERFS
GAMS: D2c1
Refined solution with error bounds of complex system of linear equations, multiple right-hand sides
Names: f07avf; nagf_lapacklin_zgerfs; zgerfs
Keywords: backward error; complex, nonsymmetric matrix; forward error; ZGERFS
GAMS: D2c1
Inverse of complex matrix, matrix already factorized by
f07arc Names: f07awc; nag_zgetri; zgetri
Keywords: complex, nonsymmetric matrix; inverse, matrix; ZGETRI
GAMS: D2c1Inverse of complex matrix, matrix already factorized by
f07arf Names: f07awf; nagf_lapacklin_zgetri; zgetri
Keywords: complex, nonsymmetric matrix; inverse, matrix; ZGETRI
GAMS: D2c1Computes the solution to a real banded system of linear equations
Names: f07bac; nag_dgbsv; dgbsv
Keywords: DGBSV; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution to a real banded system of linear equations
Names: f07baf; nagf_lapacklin_dgbsv; dgbsv
Keywords: DGBSV; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real banded system of linear equations
Names: f07bbc; nag_dgbsvx; dgbsvx
Keywords: backward error; condition number, matrix; DGBSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real banded system of linear equations
Names: f07bbf; nagf_lapacklin_dgbsvx; dgbsvx
Keywords: backward error; condition number, matrix; DGBSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
LU factorization of real m×n band matrix
Names: f07bdc; nag_dgbtrf; dgbtrf
Keywords: DGBTRF; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
LU factorization of real m×n band matrix
Names: f07bdf; nagf_lapacklin_dgbtrf; dgbtrf
Keywords: DGBTRF; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Solution of real band system of linear equations, multiple right-hand sides, matrix already factorized by
f07bdc Names: f07bec; nag_dgbtrs; dgbtrs
Keywords: DGBTRS;
LU decomposition; matrix, band; real, band matrix
GAMS: D2a2Solution of real band system of linear equations, multiple right-hand sides, matrix already factorized by
f07bdf Names: f07bef; nagf_lapacklin_dgbtrs; dgbtrs
Keywords: DGBTRS;
LU decomposition; matrix, band; real, band matrix
GAMS: D2a2Estimate condition number of real band matrix, matrix already factorized by
f07bdc Names: f07bgc; nag_dgbcon; dgbcon
Keywords: condition number, matrix; DGBCON; matrix, band; real, band matrix
GAMS: D2a2Estimate condition number of real band matrix, matrix already factorized by
f07bdf Names: f07bgf; nagf_lapacklin_dgbcon; dgbcon
Keywords: condition number, matrix; DGBCON; matrix, band; real, band matrix
GAMS: D2a2Refined solution with error bounds of real band system of linear equations, multiple right-hand sides
Names: f07bhc; nag_dgbrfs; dgbrfs
Keywords: backward error; DGBRFS; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Refined solution with error bounds of real band system of linear equations, multiple right-hand sides
Names: f07bhf; nagf_lapacklin_dgbrfs; dgbrfs
Keywords: backward error; DGBRFS; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution to a complex banded system of linear equations
Names: f07bnc; nag_zgbsv; zgbsv
Keywords: complex, band matrix; LU decomposition; matrix, band; ZGBSV
GAMS: D2c2
Computes the solution to a complex banded system of linear equations
Names: f07bnf; nagf_lapacklin_zgbsv; zgbsv
Keywords: complex, band matrix; LU decomposition; matrix, band; ZGBSV
GAMS: D2c2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex banded system of linear equations
Names: f07bpc; nag_zgbsvx; zgbsvx
Keywords: backward error; complex, band matrix; condition number, matrix; error bound, matrix; forward error; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex banded system of linear equations
Names: f07bpf; nagf_lapacklin_zgbsvx; zgbsvx
Keywords: backward error; complex, band matrix; condition number, matrix; error bound, matrix; forward error; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
LU factorization of complex m×n band matrix
Names: f07brc; nag_zgbtrf; zgbtrf
Keywords: complex, m×n matrix; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
LU factorization of complex m×n band matrix
Names: f07brf; nagf_lapacklin_zgbtrf; zgbtrf
Keywords: complex, m×n matrix; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by
f07brc Names: f07bsc; nag_zgbtrs; zgbtrs
Keywords: complex, band matrix;
LU decomposition; matrix, band; ZGBTRS
GAMS: D2c2Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by
f07brf Names: f07bsf; nagf_lapacklin_zgbtrs; zgbtrs
Keywords: complex, band matrix;
LU decomposition; matrix, band; ZGBTRS
GAMS: D2c2Computes row and column scalings intended to equilibrate a complex banded matrix and reduce its condition number
Names: f07btc; nag_zgbequ; zgbequ
Keywords: complex, band matrix; equilibration; matrix, band; scaling; ZGBEQU
GAMS: D2c2
Computes row and column scalings intended to equilibrate a complex banded matrix and reduce its condition number
Names: f07btf; nagf_lapacklin_zgbequ; zgbequ
Keywords: complex, band matrix; equilibration; matrix, band; scaling; ZGBEQU
GAMS: D2c2
Estimate condition number of complex band matrix, matrix already factorized by
f07brc Names: f07buc; nag_zgbcon; zgbcon
Keywords: complex, band matrix; condition number, matrix; matrix, band; ZGBEQU
GAMS: D2c2Estimate condition number of complex band matrix, matrix already factorized by
f07brf Names: f07buf; nagf_lapacklin_zgbcon; zgbcon
Keywords: complex, band matrix; condition number, matrix; matrix, band; ZGBEQU
GAMS: D2c2Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides
Names: f07bvc; nag_zgbrfs; zgbrfs
Keywords: backward error; complex, band matrix; error bound, matrix; forward error; matrix, band; ZGBRFS
GAMS: D2c2
Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides
Names: f07bvf; nagf_lapacklin_zgbrfs; zgbrfs
Keywords: backward error; complex, band matrix; error bound, matrix; forward error; matrix, band; ZGBRFS
GAMS: D2c2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real tridiagonal system of linear equations
Names: f07cbc; nag_dgtsvx; dgtsvx
Keywords: backward error; condition number, matrix; DGTSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real tridiagonal system of linear equations
Names: f07cbf; nagf_lapacklin_dgtsvx; dgtsvx
Keywords: backward error; condition number, matrix; DGTSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Estimates the reciprocal of the condition number of a real tridiagonal matrix using the
LU factorization computed by
f07cdc Names: f07cgc; nag_dgtcon; dgtcon
Keywords: condition number, matrix; DGTCON;
LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2aEstimates the reciprocal of the condition number of a real tridiagonal matrix using the
LU factorization computed by
f07cdf Names: f07cgf; nagf_lapacklin_dgtcon; dgtcon
Keywords: condition number, matrix; DGTCON;
LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2aRefined solution with error bounds of real tridiagonal system of linear equations, multiple right-hand sides
Names: f07chc; nag_dgtrfs; dgtrfs
Keywords: backward error; DGTCON; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Refined solution with error bounds of real tridiagonal system of linear equations, multiple right-hand sides
Names: f07chf; nagf_lapacklin_dgtrfs; dgtrfs
Keywords: backward error; DGTCON; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Computes the solution to a complex tridiagonal system of linear equations
Names: f07cnc; nag_zgtsv; zgtsv
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTSV
GAMS: D2c2a
Computes the solution to a complex tridiagonal system of linear equations
Names: f07cnf; nagf_lapacklin_zgtsv; zgtsv
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTSV
GAMS: D2c2a
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex tridiagonal system of linear equations
Names: f07cpc; nag_zgtsvx; zgtsvx
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTSVX
GAMS: D2c2a
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex tridiagonal system of linear equations
Names: f07cpf; nagf_lapacklin_zgtsvx; zgtsvx
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTSVX
GAMS: D2c2a
LU factorization of complex tridiagonal matrix
Names: f07crc; nag_zgttrf; zgttrf
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTTRF
GAMS: D2c2a
LU factorization of complex tridiagonal matrix
Names: f07crf; nagf_lapacklin_zgttrf; zgttrf
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTTRF
GAMS: D2c2a
Estimates the reciprocal of the condition number of a complex tridiagonal matrix using the
LU factorization computed by
f07cdc Names: f07cuc; nag_zgtcon; zgtcon
Keywords: complex, tridiagonal matrix; condition number, matrix;
LU decomposition; matrix, band; ZGTCON
GAMS: D2c2aEstimates the reciprocal of the condition number of a complex tridiagonal matrix using the
LU factorization computed by
f07cdf Names: f07cuf; nagf_lapacklin_zgtcon; zgtcon
Keywords: complex, tridiagonal matrix; condition number, matrix;
LU decomposition; matrix, band; ZGTCON
GAMS: D2c2aRefined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides
Names: f07cvc; nag_zgtrfs; zgtrfs
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTRFS
GAMS: D2c2a
Refined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides
Names: f07cvf; nagf_lapacklin_zgtrfs; zgtrfs
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTRFS
GAMS: D2c2a
Computes the solution to a real symmetric positive definite system of linear equations
Names: f07fac; nag_dposv; dposv
Keywords: Cholesky decomposition; DPOSV; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a real symmetric positive definite system of linear equations
Names: f07faf; nagf_lapacklin_dposv; dposv
Keywords: Cholesky decomposition; DPOSV; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations
Names: f07fbc; nag_dposvx; dposvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPOSVX; error bound, matrix; finance; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations
Names: f07fbf; nagf_lapacklin_dposvx; dposvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPOSVX; error bound, matrix; finance; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a real symmetric positive definite system of linear equations using mixed precision arithmetic
Names: f07fcf; nagf_lapacklin_dsposv; dsposv
Keywords: Cholesky decomposition; DSPOSV; mixed-precision; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix
Names: f07fdc; nag_dpotrf; dpotrf
Keywords: Cholesky decomposition; DPOTRF; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix
Names: f07fdf; nagf_lapacklin_dpotrf; dpotrf
Keywords: Cholesky decomposition; DPOTRF; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07fdc Names: f07fec; nag_dpotrs; dpotrs
Keywords: Cholesky decomposition; DPOTRS; finance; real, positive definite, symmetric matrix
GAMS: D2b1bSolution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07fdf Names: f07fef; nagf_lapacklin_dpotrs; dpotrs
Keywords: Cholesky decomposition; DPOTRS; finance; real, positive definite, symmetric matrix
GAMS: D2b1bEstimate condition number of real symmetric positive definite matrix, matrix already factorized by
f07fdc Names: f07fgc; nag_dpocon; dpocon
Keywords: condition number, matrix; DPOCON; real, positive definite, symmetric matrix
GAMS: D2b1bEstimate condition number of real symmetric positive definite matrix, matrix already factorized by
f07fdf Names: f07fgf; nagf_lapacklin_dpocon; dpocon
Keywords: condition number, matrix; DPOCON; real, positive definite, symmetric matrix
GAMS: D2b1bRefined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides
Names: f07fhc; nag_dporfs; dporfs
Keywords: backward error; Cholesky decomposition; DPORFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides
Names: f07fhf; nagf_lapacklin_dporfs; dporfs
Keywords: backward error; Cholesky decomposition; DPORFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by
f07fdc Names: f07fjc; nag_dpotri; dpotri
Keywords: Cholesky decomposition; DPOTRI; finance; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1bInverse of real symmetric positive definite matrix, matrix already factorized by
f07fdf Names: f07fjf; nagf_lapacklin_dpotri; dpotri
Keywords: Cholesky decomposition; DPOTRI; finance; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1bComputes the solution to a complex Hermitian positive definite system of linear equations
Names: f07fnc; nag_zposv; zposv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOSV
GAMS: D2d1b
Computes the solution to a complex Hermitian positive definite system of linear equations
Names: f07fnf; nagf_lapacklin_zposv; zposv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOSV
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations
Names: f07fpc; nag_zposvx; zposvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; finance; forward error; ZPOSVX
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations
Names: f07fpf; nagf_lapacklin_zposvx; zposvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; finance; forward error; ZPOSVX
GAMS: D2d1b
Computes the solution to a complex Hermitian positive definite system of linear equations using mixed precision arithmetic
Names: f07fqf; nagf_lapacklin_zcposv; zcposv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; mixed-precision; ZCPOSV
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix
Names: f07frc; nag_zpotrf; zpotrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix
Names: f07frf; nagf_lapacklin_zpotrf; zpotrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRF
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07frc Names: f07fsc; nag_zpotrs; zpotrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRS
GAMS: D2d1bSolution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07frf Names: f07fsf; nagf_lapacklin_zpotrs; zpotrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRS
GAMS: D2d1bEstimate condition number of complex Hermitian positive definite matrix, matrix already factorized by
f07frc Names: f07fuc; nag_zpocon; zpocon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; ZPOCON
GAMS: D2d1bEstimate condition number of complex Hermitian positive definite matrix, matrix already factorized by
f07frf Names: f07fuf; nagf_lapacklin_zpocon; zpocon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; ZPOCON
GAMS: D2d1bRefined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides
Names: f07fvc; nag_zporfs; zporfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPORFS
GAMS: D2d1b
Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides
Names: f07fvf; nagf_lapacklin_zporfs; zporfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPORFS
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by
f07frc Names: f07fwc; nag_zpotri; zpotri
Keywords: complex, Hermitian, positive definite matrix; inverse, matrix; ZPOTRI
GAMS: D2d1bInverse of complex Hermitian positive definite matrix, matrix already factorized by
f07frf Names: f07fwf; nagf_lapacklin_zpotri; zpotri
Keywords: complex, Hermitian, positive definite matrix; inverse, matrix; ZPOTRI
GAMS: D2d1bComputes the solution to a real symmetric positive definite system of linear equations, packed storage
Names: f07gac; nag_dppsv; dppsv
Keywords: Cholesky decomposition; DPPSV; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a real symmetric positive definite system of linear equations, packed storage
Names: f07gaf; nagf_lapacklin_dppsv; dppsv
Keywords: Cholesky decomposition; DPPSV; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations, packed storage
Names: f07gbc; nag_dppsvx; dppsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPPSVX; error bound, matrix; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations, packed storage
Names: f07gbf; nagf_lapacklin_dppsvx; dppsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPPSVX; error bound, matrix; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix, packed storage
Names: f07gdc; nag_dpptrf; dpptrf
Keywords: Cholesky decomposition; DPPTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix, packed storage
Names: f07gdf; nagf_lapacklin_dpptrf; dpptrf
Keywords: Cholesky decomposition; DPPTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07gdc, packed storage
Names: f07gec; nag_dpptrs; dpptrs
Keywords: Cholesky decomposition; DPPTRS; real, positive definite, symmetric matrix
GAMS: D2b1bSolution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07gdf, packed storage
Names: f07gef; nagf_lapacklin_dpptrs; dpptrs
Keywords: Cholesky decomposition; DPPTRS; real, positive definite, symmetric matrix
GAMS: D2b1bEstimate condition number of real symmetric positive definite matrix, matrix already factorized by
f07gdc, packed storage
Names: f07ggc; nag_dppcon; dppcon
Keywords: Cholesky decomposition; condition number, matrix; DPPCON; real, positive definite, symmetric matrix
GAMS: D2b1bEstimate condition number of real symmetric positive definite matrix, matrix already factorized by
f07gdf, packed storage
Names: f07ggf; nagf_lapacklin_dppcon; dppcon
Keywords: Cholesky decomposition; condition number, matrix; DPPCON; real, positive definite, symmetric matrix
GAMS: D2b1bRefined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07ghc; nag_dpprfs; dpprfs
Keywords: backward error; Cholesky decomposition; DPPRFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07ghf; nagf_lapacklin_dpprfs; dpprfs
Keywords: backward error; Cholesky decomposition; DPPRFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by
f07gdc, packed storage
Names: f07gjc; nag_dpptri; dpptri
Keywords: Cholesky decomposition; DPPTRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1bInverse of real symmetric positive definite matrix, matrix already factorized by
f07gdf, packed storage
Names: f07gjf; nagf_lapacklin_dpptri; dpptri
Keywords: Cholesky decomposition; DPPTRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1bComputes the solution to a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gnc; nag_zppsv; zppsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPSV
GAMS: D2d1b
Computes the solution to a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gnf; nagf_lapacklin_zppsv; zppsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPSV
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gpc; nag_zppsvx; zppsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; ZPPSVX
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gpf; nagf_lapacklin_zppsvx; zppsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; ZPPSVX
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix, packed storage
Names: f07grc; nag_zpptrf; zpptrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix, packed storage
Names: f07grf; nagf_lapacklin_zpptrf; zpptrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRF
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07grc, packed storage
Names: f07gsc; nag_zpptrs; zpptrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRS
GAMS: D2d1bSolution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by
f07grf, packed storage
Names: f07gsf; nagf_lapacklin_zpptrs; zpptrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRS
GAMS: D2d1bEstimate condition number of complex Hermitian positive definite matrix, matrix already factorized by
f07grc, packed storage
Names: f07guc; nag_zppcon; zppcon
Keywords: complex, Hermitian, positive definite matrix; condition number, matrix; ZPPCON
GAMS: D2d1bEstimate condition number of complex Hermitian positive definite matrix, matrix already factorized by
f07grf, packed storage
Names: f07guf; nagf_lapacklin_zppcon; zppcon
Keywords: complex, Hermitian, positive definite matrix; condition number, matrix; ZPPCON
GAMS: D2d1bRefined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07gvc; nag_zpprfs; zpprfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPPRFS
GAMS: D2d1b
Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07gvf; nagf_lapacklin_zpprfs; zpprfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPPRFS
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by
f07grc, packed storage
Names: f07gwc; nag_zpptri; zpptri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; inverse, matrix; ZPPTRI
GAMS: D2d1bInverse of complex Hermitian positive definite matrix, matrix already factorized by
f07grf, packed storage
Names: f07gwf; nagf_lapacklin_zpptri; zpptri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; inverse, matrix; ZPPTRI
GAMS: D2d1bComputes the solution to a real symmetric positive definite banded system of linear equations
Names: f07hac; nag_dpbsv; dpbsv
Keywords: Cholesky decomposition; DPBSV; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution to a real symmetric positive definite banded system of linear equations
Names: f07haf; nagf_lapacklin_dpbsv; dpbsv
Keywords: Cholesky decomposition; DPBSV; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite banded system of linear equations
Names: f07hbc; nag_dpbsvx; dpbsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPBSVX; error bound, matrix; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite banded system of linear equations
Names: f07hbf; nagf_lapacklin_dpbsvx; dpbsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPBSVX; error bound, matrix; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Cholesky factorization of real symmetric positive definite band matrix
Names: f07hdc; nag_dpbtrf; dpbtrf
Keywords: Cholesky decomposition; DPBTRF; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Cholesky factorization of real symmetric positive definite band matrix
Names: f07hdf; nagf_lapacklin_dpbtrf; dpbtrf
Keywords: Cholesky decomposition; DPBTRF; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Solution of real symmetric positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by
f07hdc Names: f07hec; nag_dpbtrs; dpbtrs
Keywords: Cholesky decomposition; DPBTRS; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2Solution of real symmetric positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by
f07hdf Names: f07hef; nagf_lapacklin_dpbtrs; dpbtrs
Keywords: Cholesky decomposition; DPBTRS; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2Estimate condition number of real symmetric positive definite band matrix, matrix already factorized by
f07hdc Names: f07hgc; nag_dpbcon; dpbcon
Keywords: condition number, matrix; DPBCON; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2Estimate condition number of real symmetric positive definite band matrix, matrix already factorized by
f07hdf Names: f07hgf; nagf_lapacklin_dpbcon; dpbcon
Keywords: condition number, matrix; DPBCON; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2Refined solution with error bounds of real symmetric positive definite band system of linear equations, multiple right-hand sides
Names: f07hhc; nag_dpbrfs; dpbrfs
Keywords: backward error; Cholesky decomposition; DPBRFS; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Refined solution with error bounds of real symmetric positive definite band system of linear equations, multiple right-hand sides
Names: f07hhf; nagf_lapacklin_dpbrfs; dpbrfs
Keywords: backward error; Cholesky decomposition; DPBRFS; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution to a complex Hermitian positive definite banded system of linear equations
Names: f07hnc; nag_zpbsv; zpbsv
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBSV
GAMS: D2d2
Computes the solution to a complex Hermitian positive definite banded system of linear equations
Names: f07hnf; nagf_lapacklin_zpbsv; zpbsv
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBSV
GAMS: D2d2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite banded system of linear equations
Names: f07hpc; nag_zpbsvx; zpbsvx
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPBSVX
GAMS: D2d2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite banded system of linear equations
Names: f07hpf; nagf_lapacklin_zpbsvx; zpbsvx
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPBSVX
GAMS: D2d2
Cholesky factorization of complex Hermitian positive definite band matrix
Names: f07hrc; nag_zpbtrf; zpbtrf
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRF
GAMS: D2d2
Cholesky factorization of complex Hermitian positive definite band matrix
Names: f07hrf; nagf_lapacklin_zpbtrf; zpbtrf
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRF
GAMS: D2d2
Solution of complex Hermitian positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by
f07hrc Names: f07hsc; nag_zpbtrs; zpbtrs
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRS
GAMS: D2d2Solution of complex Hermitian positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by
f07hrf Names: f07hsf; nagf_lapacklin_zpbtrs; zpbtrs
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRS
GAMS: D2d2Estimate condition number of complex Hermitian positive definite band matrix, matrix already factorized by
f07hrc Names: f07huc; nag_zpbcon; zpbcon
Keywords: complex, band, Hermitian, positive definite matrix; condition number, matrix; matrix, band; ZPBCON
GAMS: D2d2Estimate condition number of complex Hermitian positive definite band matrix, matrix already factorized by
f07hrf Names: f07huf; nagf_lapacklin_zpbcon; zpbcon
Keywords: complex, band, Hermitian, positive definite matrix; condition number, matrix; matrix, band; ZPBCON
GAMS: D2d2Refined solution with error bounds of complex Hermitian positive definite band system of linear equations, multiple right-hand sides
Names: f07hvc; nag_zpbrfs; zpbrfs
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; error bound, matrix; forward error; matrix, band; ZPBRFS
GAMS: D2d2
Refined solution with error bounds of complex Hermitian positive definite band system of linear equations, multiple right-hand sides
Names: f07hvf; nagf_lapacklin_zpbrfs; zpbrfs
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; error bound, matrix; forward error; matrix, band; ZPBRFS
GAMS: D2d2
Computes the solution to a real symmetric positive definite tridiagonal system of linear equations
Names: f07jac; nag_dptsv; dptsv
Keywords: Cholesky decomposition; DPTSV; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Computes the solution to a real symmetric positive definite tridiagonal system of linear equations
Names: f07jaf; nagf_lapacklin_dptsv; dptsv
Keywords: Cholesky decomposition; DPTSV; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite tridiagonal system of linear equations
Names: f07jbc; nag_dptsvx; dptsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPTSVX; error bound, matrix; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite tridiagonal system of linear equations
Names: f07jbf; nagf_lapacklin_dptsvx; dptsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPTSVX; error bound, matrix; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Solves a real symmetric positive definite tridiagonal system using the
LDLT factorization computed by
f07jdc Names: f07jec; nag_dpttrs; dpttrs
Keywords: Cholesky decomposition; DPTTRS; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2aSolves a real symmetric positive definite tridiagonal system using the
LDLT factorization computed by
f07jdf Names: f07jef; nagf_lapacklin_dpttrs; dpttrs
Keywords: Cholesky decomposition; DPTTRS; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2aComputes the reciprocal of the condition number of a real symmetric positive definite tridiagonal system using the
LDLT factorization computed by
f07jdc Names: f07jgc; nag_dptcon; dptcon
Keywords: condition number, matrix; DPTCON; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2aComputes the reciprocal of the condition number of a real symmetric positive definite tridiagonal system using the
LDLT factorization computed by
f07jdf Names: f07jgf; nagf_lapacklin_dptcon; dptcon
Keywords: condition number, matrix; DPTCON; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2aRefined solution with error bounds of real symmetric positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jhc; nag_dptrfs; dptrfs
Keywords: backward error; Cholesky decomposition; DPTRFS; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Refined solution with error bounds of real symmetric positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jhf; nagf_lapacklin_dptrfs; dptrfs
Keywords: backward error; Cholesky decomposition; DPTRFS; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Computes the solution to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jnc; nag_zptsv; zptsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPTSV
GAMS: D2d2a
Computes the solution to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jnf; nagf_lapacklin_zptsv; zptsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPTSV
GAMS: D2d2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jpc; nag_zptsvx; zptsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPTSVX
GAMS: D2d2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jpf; nagf_lapacklin_zptsvx; zptsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPTSVX
GAMS: D2d2a
Solves a complex Hermitian positive definite tridiagonal system using the
LDLH factorization computed by
f07jrc Names: f07jsc; nag_zpttrs; zpttrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPPTRS
GAMS: D2d2aSolves a complex Hermitian positive definite tridiagonal system using the
LDLH factorization computed by
f07jrf Names: f07jsf; nagf_lapacklin_zpttrs; zpttrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPPTRS
GAMS: D2d2aComputes the reciprocal of the condition number of a complex Hermitian positive definite tridiagonal system using the
LDLH factorization computed by
f07jrc Names: f07juc; nag_zptcon; zptcon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; matrix, band; ZPTCON
GAMS: D2d2aComputes the reciprocal of the condition number of a complex Hermitian positive definite tridiagonal system using the
LDLH factorization computed by
f07jrf Names: f07juf; nagf_lapacklin_zptcon; zptcon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; matrix, band; ZPTCON
GAMS: D2d2aRefined solution with error bounds of complex Hermitian positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jvc; nag_zptrfs; zptrfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; forward error; matrix, band; ZPTRFS
GAMS: D2d2a
Refined solution with error bounds of complex Hermitian positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jvf; nagf_lapacklin_zptrfs; zptrfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; forward error; matrix, band; ZPTRFS
GAMS: D2d2a
Cholesky factorization, with complete pivoting, of a real, symmetric, positive semidefinite matrix
Names: f07kdc; nag_dpstrf; dpstrf
Keywords: Cholesky decomposition; DPSTRF; real, positive-semidefinite, symmetric matrix
GAMS: D2b1b
Cholesky factorization, with complete pivoting, of a real, symmetric, positive semidefinite matrix
Names: f07kdf; nagf_lapacklin_dpstrf; dpstrf
Keywords: Cholesky decomposition; DPSTRF; real, positive-semidefinite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of complex Hermitian positive semidefinite matrix
Names: f07krc; nag_zpstrf; zpstrf
Keywords: Cholesky decomposition; complex, Hermitian, positive-semidefinite matrix; ZPSTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive semidefinite matrix
Names: f07krf; nagf_lapacklin_zpstrf; zpstrf
Keywords: Cholesky decomposition; complex, Hermitian, positive-semidefinite matrix; ZPSTRF
GAMS: D2d1b
Computes the solution to a real symmetric system of linear equations
Names: f07mac; nag_dsysv; dsysv
Keywords: diagonal pivoting method; DSYSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Computes the solution to a real symmetric system of linear equations
Names: f07maf; nagf_lapacklin_dsysv; dsysv
Keywords: diagonal pivoting method; DSYSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations
Names: f07mbc; nag_dsysvx; dsysvx
Keywords: backward error; diagonal pivoting method; DSYSVX; forward error; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations
Names: f07mbf; nagf_lapacklin_dsysvx; dsysvx
Keywords: backward error; diagonal pivoting method; DSYSVX; forward error; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix
Names: f07mdc; nag_dsytrf; dsytrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix
Names: f07mdf; nagf_lapacklin_dsytrf; dsytrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07mdc Names: f07mec; nag_dsytrs; dsytrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRS; real, indefinite, symmetric matrix
GAMS: D2b1aSolution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07mdf Names: f07mef; nagf_lapacklin_dsytrs; dsytrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRS; real, indefinite, symmetric matrix
GAMS: D2b1aEstimate condition number of real symmetric indefinite matrix, matrix already factorized by
f07mdc Names: f07mgc; nag_dsycon; dsycon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSYCON; real, indefinite, symmetric matrix
GAMS: D2b1aEstimate condition number of real symmetric indefinite matrix, matrix already factorized by
f07mdf Names: f07mgf; nagf_lapacklin_dsycon; dsycon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSYCON; real, indefinite, symmetric matrix
GAMS: D2b1aRefined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides
Names: f07mhc; nag_dsyrfs; dsyrfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSYRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides
Names: f07mhf; nagf_lapacklin_dsyrfs; dsyrfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSYRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Inverse of real symmetric indefinite matrix, matrix already factorized by
f07mdc Names: f07mjc; nag_dsytri; dsytri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1aInverse of real symmetric indefinite matrix, matrix already factorized by
f07mdf Names: f07mjf; nagf_lapacklin_dsytri; dsytri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1aComputes the solution to a complex Hermitian system of linear equations
Names: f07mnc; nag_zhesv; zhesv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZHESV
GAMS: D2d1a
Computes the solution to a complex Hermitian system of linear equations
Names: f07mnf; nagf_lapacklin_zhesv; zhesv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZHESV
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations
Names: f07mpc; nag_zhesvx; zhesvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZHESVX
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations
Names: f07mpf; nagf_lapacklin_zhesvx; zhesvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZHESVX
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix
Names: f07mrc; nag_zhetrf; zhetrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRF
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix
Names: f07mrf; nagf_lapacklin_zhetrf; zhetrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRF
GAMS: D2d1a
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07mrc Names: f07msc; nag_zhetrs; zhetrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRS
GAMS: D2d1aSolution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07mrf Names: f07msf; nagf_lapacklin_zhetrs; zhetrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRS
GAMS: D2d1aEstimate condition number of complex Hermitian indefinite matrix, matrix already factorized by
f07mrc Names: f07muc; nag_zhecon; zhecon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHECON
GAMS: D2d1aEstimate condition number of complex Hermitian indefinite matrix, matrix already factorized by
f07mrf Names: f07muf; nagf_lapacklin_zhecon; zhecon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHECON
GAMS: D2d1aRefined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides
Names: f07mvc; nag_zherfs; zherfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHERFS
GAMS: D2d1a
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides
Names: f07mvf; nagf_lapacklin_zherfs; zherfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHERFS
GAMS: D2d1a
Inverse of complex Hermitian indefinite matrix, matrix already factorized by
f07mrc Names: f07mwc; nag_zhetri; zhetri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHETRI
GAMS: D2d1aInverse of complex Hermitian indefinite matrix, matrix already factorized by
f07mrf Names: f07mwf; nagf_lapacklin_zhetri; zhetri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHETRI
GAMS: D2d1aComputes the solution to a complex symmetric system of linear equations
Names: f07nnc; nag_zsysv; zsysv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZSYSV
GAMS: D2c1
Computes the solution to a complex symmetric system of linear equations
Names: f07nnf; nagf_lapacklin_zsysv; zsysv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZSYSV
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations
Names: f07npc; nag_zsysvx; zsysvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZSYSVX
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations
Names: f07npf; nagf_lapacklin_zsysvx; zsysvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZSYSVX
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix
Names: f07nrc; nag_zsytrf; zsytrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRF
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix
Names: f07nrf; nagf_lapacklin_zsytrf; zsytrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRF
GAMS: D2c1
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by
f07nrc Names: f07nsc; nag_zsytrs; zsytrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRS
GAMS: D2c1Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by
f07nrf Names: f07nsf; nagf_lapacklin_zsytrs; zsytrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRS
GAMS: D2c1Estimate condition number of complex symmetric matrix, matrix already factorized by
f07nrc Names: f07nuc; nag_zsycon; zsycon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSYCON
GAMS: D2c1Estimate condition number of complex symmetric matrix, matrix already factorized by
f07nrf Names: f07nuf; nagf_lapacklin_zsycon; zsycon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSYCON
GAMS: D2c1Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides
Names: f07nvc; nag_zsyrfs; zsyrfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSYRFS
GAMS: D2c1
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides
Names: f07nvf; nagf_lapacklin_zsyrfs; zsyrfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSYRFS
GAMS: D2c1
Inverse of complex symmetric matrix, matrix already factorized by
f07nrc Names: f07nwc; nag_zsytri; zsytri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSYTRI
GAMS: D2c1Inverse of complex symmetric matrix, matrix already factorized by
f07nrf Names: f07nwf; nagf_lapacklin_zsytri; zsytri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSYTRI
GAMS: D2c1Computes the solution to a real symmetric system of linear equations, packed storage
Names: f07pac; nag_dspsv; dspsv
Keywords: diagonal pivoting method; DSPSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decomposition
GAMS: D2b1a
Computes the solution to a real symmetric system of linear equations, packed storage
Names: f07paf; nagf_lapacklin_dspsv; dspsv
Keywords: diagonal pivoting method; DSPSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decomposition
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage. Error bounds and a condition estimate are also computed
Names: f07pbc; nag_dspsvx; dspsvx
Keywords: backward error; condition number, matrix; diagonal pivoting method; DSPSVX; error bound, matrix; forward error; LDLH decomposition; real, indefinite, symmetric matrix; UDUH decomposition
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage. Error bounds and a condition estimate are also computed
Names: f07pbf; nagf_lapacklin_dspsvx; dspsvx
Keywords: backward error; condition number, matrix; diagonal pivoting method; DSPSVX; error bound, matrix; forward error; LDLH decomposition; real, indefinite, symmetric matrix; UDUH decomposition
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix, packed storage
Names: f07pdc; nag_dsptrf; dsptrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix, packed storage
Names: f07pdf; nagf_lapacklin_dsptrf; dsptrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07pdc, packed storage
Names: f07pec; nag_dsptrs; dsptrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRS; real, indefinite, symmetric matrix
GAMS: D2b1aSolution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07pdf, packed storage
Names: f07pef; nagf_lapacklin_dsptrs; dsptrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRS; real, indefinite, symmetric matrix
GAMS: D2b1aEstimate condition number of real symmetric indefinite matrix, matrix already factorized by
f07pdc, packed storage
Names: f07pgc; nag_dspcon; dspcon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSPCON; real, indefinite, symmetric matrix
GAMS: D2b1aEstimate condition number of real symmetric indefinite matrix, matrix already factorized by
f07pdf, packed storage
Names: f07pgf; nagf_lapacklin_dspcon; dspcon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSPCON; real, indefinite, symmetric matrix
GAMS: D2b1aRefined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07phc; nag_dsprfs; dsprfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSPRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07phf; nagf_lapacklin_dsprfs; dsprfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSPRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Inverse of real symmetric indefinite matrix, matrix already factorized by
f07pdc, packed storage
Names: f07pjc; nag_dsptri; dsptri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1aInverse of real symmetric indefinite matrix, matrix already factorized by
f07pdf, packed storage
Names: f07pjf; nagf_lapacklin_dsptri; dsptri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1aComputes the solution to a complex Hermitian system of linear equations, packed storage
Names: f07pnc; nag_zhpsv; zhpsv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSV
GAMS: D2d1a
Computes the solution to a complex Hermitian system of linear equations, packed storage
Names: f07pnf; nagf_lapacklin_zhpsv; zhpsv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSV
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex, Hermitian, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07ppc; nag_zhpsvx; zhpsvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSVX
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex, Hermitian, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07ppf; nagf_lapacklin_zhpsvx; zhpsvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSVX
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix, packed storage
Names: f07prc; nag_zhptrf; zhptrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRF
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix, packed storage
Names: f07prf; nagf_lapacklin_zhptrf; zhptrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRF
GAMS: D2d1a
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07prc, packed storage
Names: f07psc; nag_zhptrs; zhptrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRS
GAMS: D2d1aSolution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by
f07prf, packed storage
Names: f07psf; nagf_lapacklin_zhptrs; zhptrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRS
GAMS: D2d1aEstimate condition number of complex Hermitian indefinite matrix, matrix already factorized by
f07prc, packed storage
Names: f07puc; nag_zhpcon; zhpcon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHPCON
GAMS: D2d1aEstimate condition number of complex Hermitian indefinite matrix, matrix already factorized by
f07prf, packed storage
Names: f07puf; nagf_lapacklin_zhpcon; zhpcon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHPCON
GAMS: D2d1aRefined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07pvc; nag_zhprfs; zhprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHPRFS
GAMS: D2d1a
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07pvf; nagf_lapacklin_zhprfs; zhprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHPRFS
GAMS: D2d1a
Inverse of complex Hermitian indefinite matrix, matrix already factorized by
f07prc, packed storage
Names: f07pwc; nag_zhptri; zhptri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHPTRI
GAMS: D2d1aInverse of complex Hermitian indefinite matrix, matrix already factorized by
f07prf, packed storage
Names: f07pwf; nagf_lapacklin_zhptri; zhptri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHPTRI
GAMS: D2d1aComputes the solution to a complex symmetric system of linear equations, packed storage
Names: f07qnc; nag_zspsv; zspsv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLT decomposition; UDUT decomposition; ZSPSV
GAMS: D2c1
Computes the solution to a complex symmetric system of linear equations, packed storage
Names: f07qnf; nagf_lapacklin_zspsv; zspsv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLT decomposition; UDUT decomposition; ZSPSV
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex, symmetric, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07qpc; nag_zspsvx; zspsvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLT decomposition; UDUT decomposition; ZSPSVX
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex, symmetric, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07qpf; nagf_lapacklin_zspsvx; zspsvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLT decomposition; UDUT decomposition; ZSPSVX
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix, packed storage
Names: f07qrc; nag_zsptrf; zsptrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRF
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix, packed storage
Names: f07qrf; nagf_lapacklin_zsptrf; zsptrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRF
GAMS: D2c1
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by
f07qrc, packed storage
Names: f07qsc; nag_zsptrs; zsptrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRS
GAMS: D2c1Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by
f07qrf, packed storage
Names: f07qsf; nagf_lapacklin_zsptrs; zsptrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRS
GAMS: D2c1Estimate condition number of complex symmetric matrix, matrix already factorized by
f07qrc, packed storage
Names: f07quc; nag_zspcon; zspcon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSPCON
GAMS: D2c1Estimate condition number of complex symmetric matrix, matrix already factorized by
f07qrf, packed storage
Names: f07quf; nagf_lapacklin_zspcon; zspcon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSPCON
GAMS: D2c1Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
Names: f07qvc; nag_zsprfs; zsprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSPRFS
GAMS: D2c1
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
Names: f07qvf; nagf_lapacklin_zsprfs; zsprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSPRFS
GAMS: D2c1
Inverse of complex symmetric matrix, matrix already factorized by
f07qrc, packed storage
Names: f07qwc; nag_zsptri; zsptri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSPTRI
GAMS: D2c1Inverse of complex symmetric matrix, matrix already factorized by
f07qrf, packed storage
Names: f07qwf; nagf_lapacklin_zsptri; zsptri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSPTRI
GAMS: D2c1Solution of real triangular system of linear equations, multiple right-hand sides
Names: f07tec; nag_dtrtrs; dtrtrs
Keywords: DTRTRS; finance; real, triangular matrix
GAMS: D2a3
Solution of real triangular system of linear equations, multiple right-hand sides
Names: f07tef; nagf_lapacklin_dtrtrs; dtrtrs
Keywords: DTRTRS; finance; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix
Names: f07tgc; nag_dtrcon; dtrcon
Keywords: condition number, matrix; DTRCON; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix
Names: f07tgf; nagf_lapacklin_dtrcon; dtrcon
Keywords: condition number, matrix; DTRCON; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides
Names: f07thc; nag_dtrrfs; dtrrfs
Keywords: backward error; DTRRFS; error bound, matrix; finance; forward error; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides
Names: f07thf; nagf_lapacklin_dtrrfs; dtrrfs
Keywords: backward error; DTRRFS; error bound, matrix; finance; forward error; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix
Names: f07tjc; nag_dtrtri; dtrtri
Keywords: DTRTRI; finance; inverse, matrix; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix
Names: f07tjf; nagf_lapacklin_dtrtri; dtrtri
Keywords: DTRTRI; finance; inverse, matrix; real, triangular matrix
GAMS: D2a3
Solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tsc; nag_ztrtrs; ztrtrs
Keywords: complex, triangular matrix; ZTRTRS
GAMS: D2c3
Solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tsf; nagf_lapacklin_ztrtrs; ztrtrs
Keywords: complex, triangular matrix; ZTRTRS
GAMS: D2c3
Estimate condition number of complex triangular matrix
Names: f07tuc; nag_ztrcon; ztrcon
Keywords: complex, triangular matrix; condition number, matrix; ZTRCON
GAMS: D2c3
Estimate condition number of complex triangular matrix
Names: f07tuf; nagf_lapacklin_ztrcon; ztrcon
Keywords: complex, triangular matrix; condition number, matrix; ZTRCON
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tvc; nag_ztrrfs; ztrrfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTRRFS
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tvf; nagf_lapacklin_ztrrfs; ztrrfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTRRFS
GAMS: D2c3
Inverse of complex triangular matrix
Names: f07twc; nag_ztrtri; ztrtri
Keywords: complex, triangular matrix; inverse, matrix; ZTRTRI
GAMS: D2c3
Inverse of complex triangular matrix
Names: f07twf; nagf_lapacklin_ztrtri; ztrtri
Keywords: complex, triangular matrix; inverse, matrix; ZTRTRI
GAMS: D2c3
Solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uec; nag_dtptrs; dtptrs
Keywords: DTPTRS; real, triangular matrix
GAMS: D2a3
Solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uef; nagf_lapacklin_dtptrs; dtptrs
Keywords: DTPTRS; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix, packed storage
Names: f07ugc; nag_dtpcon; dtpcon
Keywords: condition number, matrix; DTPCON; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix, packed storage
Names: f07ugf; nagf_lapacklin_dtpcon; dtpcon
Keywords: condition number, matrix; DTPCON; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uhc; nag_dtprfs; dtprfs
Keywords: backward error; DTPRFS; error bound, matrix; forward error; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uhf; nagf_lapacklin_dtprfs; dtprfs
Keywords: backward error; DTPRFS; error bound, matrix; forward error; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix, packed storage
Names: f07ujc; nag_dtptri; dtptri
Keywords: DTPTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix, packed storage
Names: f07ujf; nagf_lapacklin_dtptri; dtptri
Keywords: DTPTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07usc; nag_ztptrs; ztptrs
Keywords: complex, triangular matrix; ZTPTRS
GAMS: D2c3
Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07usf; nagf_lapacklin_ztptrs; ztptrs
Keywords: complex, triangular matrix; ZTPTRS
GAMS: D2c3
Estimate condition number of complex triangular matrix, packed storage
Names: f07uuc; nag_ztpcon; ztpcon
Keywords: complex, triangular matrix; condition number, matrix; ZTPCON
GAMS: D2c3
Estimate condition number of complex triangular matrix, packed storage
Names: f07uuf; nagf_lapacklin_ztpcon; ztpcon
Keywords: complex, triangular matrix; condition number, matrix; ZTPCON
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uvc; nag_ztprfs; ztprfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTPRFS
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uvf; nagf_lapacklin_ztprfs; ztprfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTPRFS
GAMS: D2c3
Inverse of complex triangular matrix, packed storage
Names: f07uwc; nag_ztptri; ztptri
Keywords: complex, triangular matrix; inverse, matrix; ZTPTRI
GAMS: D2c3
Inverse of complex triangular matrix, packed storage
Names: f07uwf; nagf_lapacklin_ztptri; ztptri
Keywords: complex, triangular matrix; inverse, matrix; ZTPTRI
GAMS: D2c3
Solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vec; nag_dtbtrs; dtbtrs
Keywords: DTBTRS; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vef; nagf_lapacklin_dtbtrs; dtbtrs
Keywords: DTBTRS; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Estimate condition number of real band triangular matrix
Names: f07vgc; nag_dtbcon; dtbcon
Keywords: condition number, matrix; DTBCON; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Estimate condition number of real band triangular matrix
Names: f07vgf; nagf_lapacklin_dtbcon; dtbcon
Keywords: condition number, matrix; DTBCON; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vhc; nag_dtbrfs; dtbrfs
Keywords: backward error; DTBRFS; error bound, matrix; forward error; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vhf; nagf_lapacklin_dtbrfs; dtbrfs
Keywords: backward error; DTBRFS; error bound, matrix; forward error; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vsc; nag_ztbtrs; ztbtrs
Keywords: complex, band, triangular matrix; matrix, band; ZTBTRS
GAMS: D2c2, D2c3
Solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vsf; nagf_lapacklin_ztbtrs; ztbtrs
Keywords: complex, band, triangular matrix; matrix, band; ZTBTRS
GAMS: D2c2, D2c3
Estimate condition number of complex band triangular matrix
Names: f07vuc; nag_ztbcon; ztbcon
Keywords: complex, band, triangular matrix; condition number, matrix; matrix, band; ZTBCON
GAMS: D2c3, D2c2
Estimate condition number of complex band triangular matrix
Names: f07vuf; nagf_lapacklin_ztbcon; ztbcon
Keywords: complex, band, triangular matrix; condition number, matrix; matrix, band; ZTBCON
GAMS: D2c3, D2c2
Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vvc; nag_ztbrfs; ztbrfs
Keywords: backward error; complex, band, triangular matrix; error bound, matrix; forward error; matrix, band; ZTBRFS
GAMS: D2c2, D2c3
Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vvf; nagf_lapacklin_ztbrfs; ztbrfs
Keywords: backward error; complex, band, triangular matrix; error bound, matrix; forward error; matrix, band; ZTBRFS
GAMS: D2c2, D2c3
Cholesky factorization of real symmetric positive definite matrix, Rectangular Full Packed format
Names: f07wdc; nag_dpftrf; dpftrf
Keywords: Cholesky decomposition; DPFTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix, Rectangular Full Packed format
Names: f07wdf; nagf_lapacklin_dpftrf; dpftrf
Keywords: Cholesky decomposition; DPFTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by
f07wdc, Rectangular Full Packed format
Names: f07wec; nag_dpftrs; dpftrs
Keywords: Cholesky decomposition; DPFTRS; real, positive definite, symmetric matrix
GAMS: D2b1bSolution of real symmetric positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by
f07wdf, Rectangular Full Packed format
Names: f07wef; nagf_lapacklin_dpftrs; dpftrs
Keywords: Cholesky decomposition; DPFTRS; real, positive definite, symmetric matrix
GAMS: D2b1bInverse of real symmetric positive definite matrix, matrix already factorized by
f07wdc, Rectangular Full Packed format
Names: f07wjc; nag_dpftri; dpftri
Keywords: Cholesky decomposition; DPETRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1bInverse of real symmetric positive definite matrix, matrix already factorized by
f07wdf, Rectangular Full Packed format
Names: f07wjf; nagf_lapacklin_dpftri; dpftri
Keywords: Cholesky decomposition; DPETRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1bInverse of real triangular matrix, Rectangular Full Packed format
Names: f07wkc; nag_dtftri; dtftri
Keywords: DTFTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix, Rectangular Full Packed format
Names: f07wkf; nagf_lapacklin_dtftri; dtftri
Keywords: DTFTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Cholesky factorization of complex Hermitian positive definite matrix, Rectangular Full Packed format
Names: f07wrc; nag_zpftrf; zpftrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix, Rectangular Full Packed format
Names: f07wrf; nagf_lapacklin_zpftrf; zpftrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRF
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by
f07wrc, Rectangular Full Packed format
Names: f07wsc; nag_zpftrs; zpftrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRS
GAMS: D2d1bSolution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by
f07wrf, Rectangular Full Packed format
Names: f07wsf; nagf_lapacklin_zpftrs; zpftrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRS
GAMS: D2d1bInverse of complex Hermitian positive definite matrix, matrix already factorized by
f07wrc, Rectangular Full Packed format
Names: f07wwc; nag_zpftri; zpftri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPETRI
GAMS: D2d1bInverse of complex Hermitian positive definite matrix, matrix already factorized by
f07wrf, Rectangular Full Packed format
Names: f07wwf; nagf_lapacklin_zpftri; zpftri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPETRI
GAMS: D2d1bInverse of complex triangular matrix, Rectangular Full Packed format
Names: f07wxc; nag_ztftri; ztftri
Keywords: complex, triangular matrix; inverse, matrix; ZTFTRI
GAMS: D2c3
Inverse of complex triangular matrix, Rectangular Full Packed format
Names: f07wxf; nagf_lapacklin_ztftri; ztftri
Keywords: complex, triangular matrix; inverse, matrix; ZTFTRI
GAMS: D2c3
Solves a real linear least squares problem of full rank
Names: f08aac; nag_dgels; dgels
Keywords: DGELS; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; real, m×n matrix; underdetermined linear system
GAMS: D9a1
Solves a real linear least squares problem of full rank
Names: f08aaf; nagf_lapackeig_dgels; dgels
Keywords: DGELS; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; real, m×n matrix; underdetermined linear system
GAMS: D9a1
Performs a QR factorization of real general rectangular matrix, with explicit blocking
Names: f08abc; nag_dgeqrt; dgeqrt
Keywords: DGEQRT; explicit blocking; QR factorization; real, m by n matrix; recursive QR
GAMS: D5
Performs a QR factorization of real general rectangular matrix, with explicit blocking
Names: f08abf; nagf_lapackeig_dgeqrt; dgeqrt
Keywords: DGEQRT; explicit blocking; QR factorization; real, m by n matrix; recursive QR
GAMS: D5
Applies the orthogonal transformation determined by
f08abc Names: f08acc; nag_dgemqrt; dgemqrt
Keywords: DGEMQRT; explicit blocking; orthogonal transformations;
QR factorization; recursive
QRGAMS: D5Applies the orthogonal transformation determined by
f08abf Names: f08acf; nagf_lapackeig_dgemqrt; dgemqrt
Keywords: DGEMQRT; explicit blocking; orthogonal transformations;
QR factorization; recursive
QRGAMS: D5Performs a QR factorization of real general rectangular matrix
Names: f08aec; nag_dgeqrf; dgeqrf
Keywords: DGEQRF; finance; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Performs a QR factorization of real general rectangular matrix
Names: f08aef; nagf_lapackeig_dgeqrf; dgeqrf
Keywords: DGEQRF; finance; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Forms all or part of orthogonal
Q from
QR factorization determined by
f08aec,
f08bec or
f08bfc Names: f08afc; nag_dorgqr; dorgqr
Keywords: DORGQR; LAPACK; orthogonal matrix, generation; orthogonal transformations;
QR factorization
GAMS: D5Forms all or part of orthogonal
Q from
QR factorization determined by
f08aef,
f08bef or
f08bff Names: f08aff; nagf_lapackeig_dorgqr; dorgqr
Keywords: DORGQR; LAPACK; orthogonal matrix, generation; orthogonal transformations;
QR factorization
GAMS: D5Applies an orthogonal transformation determined by
f08aec,
f08bec or
f08bfc Names: f08agc; nag_dormqr; dormqr
Keywords: DORMQR; finance; LAPACK; orthogonal transformations;
QR factorization
GAMS: D5Applies an orthogonal transformation determined by
f08aef,
f08bef or
f08bff Names: f08agf; nagf_lapackeig_dormqr; dormqr
Keywords: DORMQR; finance; LAPACK; orthogonal transformations;
QR factorization
GAMS: D5Performs a LQ factorization of real general rectangular matrix
Names: f08ahc; nag_dgelqf; dgelqf
Keywords: DGELQF; LAPACK; LQ factorization; real, m×n matrix
GAMS: D5
Performs a LQ factorization of real general rectangular matrix
Names: f08ahf; nagf_lapackeig_dgelqf; dgelqf
Keywords: DGELQF; LAPACK; LQ factorization; real, m×n matrix
GAMS: D5
Forms all or part of orthogonal
Q from
LQ factorization determined by
f08ahc Names: f08ajc; nag_dorglq; dorglq
Keywords: DORGLQ; LAPACK;
LQ factorization; orthogonal matrix, generation; orthogonal transformations
GAMS: D5Forms all or part of orthogonal
Q from
LQ factorization determined by
f08ahf Names: f08ajf; nagf_lapackeig_dorglq; dorglq
Keywords: DORGLQ; LAPACK;
LQ factorization; orthogonal matrix, generation; orthogonal transformations
GAMS: D5Applies the orthogonal transformation determined by
f08ahc Names: f08akc; nag_dormlq; dormlq
Keywords: DORMLQ; LAPACK;
LQ factorization; orthogonal transformations
GAMS: D5Applies the orthogonal transformation determined by
f08ahf Names: f08akf; nagf_lapackeig_dormlq; dormlq
Keywords: DORMLQ; LAPACK;
LQ factorization; orthogonal transformations
GAMS: D5Solves a complex linear least problem of full rank
Names: f08anc; nag_zgels; zgels
Keywords: complex, m×n matrix; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; underdetermined linear system; ZGELS
GAMS: D9a1
Solves a complex linear least problem of full rank
Names: f08anf; nagf_lapackeig_zgels; zgels
Keywords: complex, m×n matrix; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; underdetermined linear system; ZGELS
GAMS: D9a1
Performs a QR factorization of complex general rectangular matrix using recursive algorithm
Names: f08apc; nag_zgeqrt; zgeqrt
Keywords: complex, m by n matrix; explicit blocking; QR factorization; recursive QR; ZGEQRT
GAMS: D5
Performs a QR factorization of complex general rectangular matrix using recursive algorithm
Names: f08apf; nagf_lapackeig_zgeqrt; zgeqrt
Keywords: complex, m by n matrix; explicit blocking; QR factorization; recursive QR; ZGEQRT
GAMS: D5
Applies the unitary transformation determined by
f08apc Names: f08aqc; nag_zgemqrt; zgemqrt
Keywords: explicit blocking;
QR factorization; recursive
QR; unitary transformations; ZGEMQRT
GAMS: D5Applies the unitary transformation determined by
f08apf Names: f08aqf; nagf_lapackeig_zgemqrt; zgemqrt
Keywords: explicit blocking;
QR factorization; recursive
QR; unitary transformations; ZGEMQRT
GAMS: D5Performs a QR factorization of complex general rectangular matrix
Names: f08asc; nag_zgeqrf; zgeqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQRF
GAMS: D5
Performs a QR factorization of complex general rectangular matrix
Names: f08asf; nagf_lapackeig_zgeqrf; zgeqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQRF
GAMS: D5
Forms all or part of unitary
Q from
QR factorization determined by
f08asc,
f08bsc or
f08btc Names: f08atc; nag_zungqr; zungqr
Keywords: LAPACK;
QR factorization; unitary matrix, generation; unitary transformations; ZUNGQR
GAMS: D5Forms all or part of unitary
Q from
QR factorization determined by
f08asf,
f08bsf or
f08btf Names: f08atf; nagf_lapackeig_zungqr; zungqr
Keywords: LAPACK;
QR factorization; unitary matrix, generation; unitary transformations; ZUNGQR
GAMS: D5Applies a unitary transformation determined by
f08asc,
f08bsc or
f08btc Names: f08auc; nag_zunmqr; zunmqr
Keywords: LAPACK;
QR factorization; unitary transformations; ZUNMQR
GAMS: D5Applies a unitary transformation determined by
f08asf,
f08bsf or
f08btf Names: f08auf; nagf_lapackeig_zunmqr; zunmqr
Keywords: LAPACK;
QR factorization; unitary transformations; ZUNMQR
GAMS: D5Performs a LQ factorization of complex general rectangular matrix
Names: f08avc; nag_zgelqf; zgelqf
Keywords: complex, m×n matrix; LAPACK; LQ factorization; ZGELQF
GAMS: D5
Performs a LQ factorization of complex general rectangular matrix
Names: f08avf; nagf_lapackeig_zgelqf; zgelqf
Keywords: complex, m×n matrix; LAPACK; LQ factorization; ZGELQF
GAMS: D5
Forms all or part of unitary
Q from
LQ factorization determined by
f08avc Names: f08awc; nag_zunglq; zunglq
Keywords: LAPACK;
LQ factorization; unitary matrix, generation; unitary transformations; ZUNGLQ
GAMS: D5Forms all or part of unitary
Q from
LQ factorization determined by
f08avf Names: f08awf; nagf_lapackeig_zunglq; zunglq
Keywords: LAPACK;
LQ factorization; unitary matrix, generation; unitary transformations; ZUNGLQ
GAMS: D5Applies the unitary transformation determined by
f08avc Names: f08axc; nag_zunmlq; zunmlq
Keywords: LAPACK;
LQ factorization; unitary transformations; ZUNMLQ
GAMS: D5Applies the unitary transformation determined by
f08avf Names: f08axf; nagf_lapackeig_zunmlq; zunmlq
Keywords: LAPACK;
LQ factorization; unitary transformations; ZUNMLQ
GAMS: D5Computes the minimum-norm solution to a real linear least squares problem
Names: f08bac; nag_dgelsy; dgelsy
Keywords: DGELSY; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem
Names: f08baf; nagf_lapackeig_dgelsy; dgelsy
Keywords: DGELSY; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix
GAMS: D9a1
QR factorization of real general triangular-pentagonal matrix
Names: f08bbc; nag_dtpqrt; dtpqrt
Keywords: DTPQRT; explicit blocking; QR factorization; real, triangular-pentagonal matrix; recursive QR
GAMS: D5
QR factorization of real general triangular-pentagonal matrix
Names: f08bbf; nagf_lapackeig_dtpqrt; dtpqrt
Keywords: DTPQRT; explicit blocking; QR factorization; real, triangular-pentagonal matrix; recursive QR
GAMS: D5
Applies the orthogonal transformation determined by
f08bbc Names: f08bcc; nag_dtpmqrt; dtpmqrt
Keywords: DTPMQRT; explicit blocking; orthogonal transformations;
QR factorization; recursive
QRGAMS: D5Applies the orthogonal transformation determined by
f08bbf Names: f08bcf; nagf_lapackeig_dtpmqrt; dtpmqrt
Keywords: DTPMQRT; explicit blocking; orthogonal transformations;
QR factorization; recursive
QRGAMS: D5QR factorization, with column pivoting, of real general rectangular matrix
Names: f08bec; nag_dgeqpf; dgeqpf
Keywords: DGEQPF; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
QR factorization, with column pivoting, of real general rectangular matrix
Names: f08bef; nagf_lapackeig_dgeqpf; dgeqpf
Keywords: DGEQPF; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of real general rectangular matrix
Names: f08bfc; nag_dgeqp3; dgeqp3
Keywords: DGEQP3; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of real general rectangular matrix
Names: f08bff; nagf_lapackeig_dgeqp3; dgeqp3
Keywords: DGEQP3; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
Reduces a real upper trapezoidal matrix to upper triangular form
Names: f08bhc; nag_dtzrzf; dtzrzf
Keywords: DTZRZF; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; orthogonal transformations; real, trapezoidal matrix
GAMS: D5
Reduces a real upper trapezoidal matrix to upper triangular form
Names: f08bhf; nagf_lapackeig_dtzrzf; dtzrzf
Keywords: DTZRZF; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; orthogonal transformations; real, trapezoidal matrix
GAMS: D5
Applies the orthogonal transformation determined by
f08bhc Names: f08bkc; nag_dormrz; dormrz
Keywords: DORMRZ; LAPACK; orthogonal transformations
GAMS: D5Applies the orthogonal transformation determined by
f08bhf Names: f08bkf; nagf_lapackeig_dormrz; dormrz
Keywords: DORMRZ; LAPACK; orthogonal transformations
GAMS: D5Computes the minimum-norm solution to a complex linear least squares problem
Names: f08bnc; nag_zgelsy; zgelsy
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; ZGELSY
GAMS: D9a1
Computes the minimum-norm solution to a complex linear least squares problem
Names: f08bnf; nagf_lapackeig_zgelsy; zgelsy
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; ZGELSY
GAMS: D9a1
QR factorization of complex triangular-pentagonal matrix
Names: f08bpc; nag_ztpqrt; ztpqrt
Keywords: complex, triangular-pentagonal matrix; explicit blocking; QR factorization; recursive QR; ZTPQRT
GAMS: D5
QR factorization of complex triangular-pentagonal matrix
Names: f08bpf; nagf_lapackeig_ztpqrt; ztpqrt
Keywords: complex, triangular-pentagonal matrix; explicit blocking; QR factorization; recursive QR; ZTPQRT
GAMS: D5
Applies the unitary transformation determined by
f08bpc Names: f08bqc; nag_ztpmqrt; ztpmqrt
Keywords: explicit blocking;
QR factorization; recursive
QR; unitary transformations; ZTPMQRT
GAMS: D5Applies the unitary transformation determined by
f08bpf Names: f08bqf; nagf_lapackeig_ztpmqrt; ztpmqrt
Keywords: explicit blocking;
QR factorization; recursive
QR; unitary transformations; ZTPMQRT
GAMS: D5QR factorization, with column pivoting, of complex general rectangular matrix
Names: f08bsc; nag_zgeqpf; zgeqpf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQPF
GAMS: D5
QR factorization, with column pivoting, of complex general rectangular matrix
Names: f08bsf; nagf_lapackeig_zgeqpf; zgeqpf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQPF
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of complex general rectangular matrix
Names: f08btc; nag_zgeqp3; zgeqp3
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQP3
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of complex general rectangular matrix
Names: f08btf; nagf_lapackeig_zgeqp3; zgeqp3
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQP3
GAMS: D5
Reduces a complex upper trapezoidal matrix to upper triangular form
Names: f08bvc; nag_ztzrzf; ztzrzf
Keywords: complex, trapezoidal matrix; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; ZTZRZF
GAMS: D5
Reduces a complex upper trapezoidal matrix to upper triangular form
Names: f08bvf; nagf_lapackeig_ztzrzf; ztzrzf
Keywords: complex, trapezoidal matrix; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; ZTZRZF
GAMS: D5
Applies the unitary transformation determined by
f08bvc Names: f08bxc; nag_zunmrz; zunmrz
Keywords: LAPACK; unitary transformations; ZUNMRZ
GAMS: D5Applies the unitary transformation determined by
f08bvf Names: f08bxf; nagf_lapackeig_zunmrz; zunmrz
Keywords: LAPACK; unitary transformations; ZUNMRZ
GAMS: D5QL factorization of real general rectangular matrix
Names: f08cec; nag_dgeqlf; dgeqlf
Keywords: DGEQLF; LAPACK; QL factorization; real, m×n matrix
GAMS: D5
QL factorization of real general rectangular matrix
Names: f08cef; nagf_lapackeig_dgeqlf; dgeqlf
Keywords: DGEQLF; LAPACK; QL factorization; real, m×n matrix
GAMS: D5
Form all or part of orthogonal
Q from
QL factorization determined by
f08cec Names: f08cfc; nag_dorgql; dorgql
Keywords: DORGQL; LAPACK; orthogonal matrix, generation; orthogonal transformations;
QL factorization
GAMS: D5Form all or part of orthogonal
Q from
QL factorization determined by
f08cef Names: f08cff; nagf_lapackeig_dorgql; dorgql
Keywords: DORGQL; LAPACK; orthogonal matrix, generation; orthogonal transformations;
QL factorization
GAMS: D5Applies the orthogonal transformation determined by
f08cec Names: f08cgc; nag_dormql; dormql
Keywords: DORMQL; LAPACK; orthogonal transformations;
QL factorization
GAMS: D5Applies the orthogonal transformation determined by
f08cef Names: f08cgf; nagf_lapackeig_dormql; dormql
Keywords: DORMQL; LAPACK; orthogonal transformations;
QL factorization
GAMS: D5RQ factorization of real general rectangular matrix
Names: f08chc; nag_dgerqf; dgerqf
Keywords: DGERQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
RQ factorization of real general rectangular matrix
Names: f08chf; nagf_lapackeig_dgerqf; dgerqf
Keywords: DGERQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
Form all or part of orthogonal
Q from
RQ factorization determined by
f08chc Names: f08cjc; nag_dorgrq; dorgrq
Keywords: DORGRQ; LAPACK; orthogonal matrix, generation; orthogonal transformations;
RQ factorizations
GAMS: D5Form all or part of orthogonal
Q from
RQ factorization determined by
f08chf Names: f08cjf; nagf_lapackeig_dorgrq; dorgrq
Keywords: DORGRQ; LAPACK; orthogonal matrix, generation; orthogonal transformations;
RQ factorizations
GAMS: D5Applies the orthogonal transformation determined by
f08chc Names: f08ckc; nag_dormrq; dormrq
Keywords: DORGRQ; LAPACK; orthogonal transformations;
RQ factorizations
GAMS: D5Applies the orthogonal transformation determined by
f08chf Names: f08ckf; nagf_lapackeig_dormrq; dormrq
Keywords: DORGRQ; LAPACK; orthogonal transformations;
RQ factorizations
GAMS: D5QL factorization of complex general rectangular matrix
Names: f08csc; nag_zgeqlf; zgeqlf
Keywords: complex, m×n matrix; LAPACK; QL factorization; ZGEQLF
GAMS: D5
QL factorization of complex general rectangular matrix
Names: f08csf; nagf_lapackeig_zgeqlf; zgeqlf
Keywords: complex, m×n matrix; LAPACK; QL factorization; ZGEQLF
GAMS: D5
Form all or part of unitary
Q from
QL factorization determined by
f08csc Names: f08ctc; nag_zungql; zungql
Keywords: LAPACK;
QL factorization; unitary matrix, generation; unitary transformations; ZUNGQL
GAMS: D5Form all or part of unitary
Q from
QL factorization determined by
f08csf Names: f08ctf; nagf_lapackeig_zungql; zungql
Keywords: LAPACK;
QL factorization; unitary matrix, generation; unitary transformations; ZUNGQL
GAMS: D5Applies the unitary transformation determined by
f08csc Names: f08cuc; nag_zunmql; zunmql
Keywords: LAPACK;
QL factorization; unitary transformations; ZUNMQL
GAMS: D5Applies the unitary transformation determined by
f08csf Names: f08cuf; nagf_lapackeig_zunmql; zunmql
Keywords: LAPACK;
QL factorization; unitary transformations; ZUNMQL
GAMS: D5RQ factorization of complex general rectangular matrix
Names: f08cvc; nag_zgerqf; zgerqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGERQF
GAMS: D5
RQ factorization of complex general rectangular matrix
Names: f08cvf; nagf_lapackeig_zgerqf; zgerqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGERQF
GAMS: D5
Form all or part of unitary
Q from
RQ factorization determined by
f08cvc Names: f08cwc; nag_zungrq; zungrq
Keywords: LAPACK;
RQ factorizations; unitary matrix, generation; unitary transformations; ZUNGRQ
GAMS: D5Form all or part of unitary
Q from
RQ factorization determined by
f08cvf Names: f08cwf; nagf_lapackeig_zungrq; zungrq
Keywords: LAPACK;
RQ factorizations; unitary matrix, generation; unitary transformations; ZUNGRQ
GAMS: D5Applies the unitary transformation determined by
f08cvc Names: f08cxc; nag_zunmrq; zunmrq
Keywords: LAPACK;
RQ factorizations; unitary transformations; ZUNMRQ
GAMS: D5Applies the unitary transformation determined by
f08cvf Names: f08cxf; nagf_lapackeig_zunmrq; zunmrq
Keywords: LAPACK;
RQ factorizations; unitary transformations; ZUNMRQ
GAMS: D5Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fac; nag_dsyev; dsyev
Keywords: DSYEV; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08faf; nagf_lapackeig_dsyev; dsyev
Keywords: DSYEV; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fbc; nag_dsyevx; dsyevx
Keywords: DSYEVX; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fbf; nagf_lapackeig_dsyevx; dsyevx
Keywords: DSYEVX; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix (divide-and-conquer)
Names: f08fcc; nag_dsyevd; dsyevd
Keywords: divide-and-conquer method; DSYEVD; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix (divide-and-conquer)
Names: f08fcf; nagf_lapackeig_dsyevd; dsyevd
Keywords: divide-and-conquer method; DSYEVD; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix (Relatively Robust Representations)
Names: f08fdc; nag_dsyevr; dsyevr
Keywords: dqds algorithm; DSYEVR; eigenvalues; eigenvectors; LAPACK; real, indefinite, symmetric matrix; relatively robust representations
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix (Relatively Robust Representations)
Names: f08fdf; nagf_lapackeig_dsyevr; dsyevr
Keywords: dqds algorithm; DSYEVR; eigenvalues; eigenvectors; LAPACK; real, indefinite, symmetric matrix; relatively robust representations
GAMS: D4a1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Names: f08fec; nag_dsytrd; dsytrd
Keywords: DSYTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Names: f08fef; nagf_lapackeig_dsytrd; dsytrd
Keywords: DSYTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by
f08fec Names: f08ffc; nag_dorgtr; dorgtr
Keywords: DORGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1Generate orthogonal transformation matrix from reduction to tridiagonal form determined by
f08fef Names: f08fff; nagf_lapackeig_dorgtr; dorgtr
Keywords: DORGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1Applies the orthogonal transformation determined by
f08fec Names: f08fgc; nag_dormtr; dormtr
Keywords: DORMTR; LAPACK; orthogonal transformations
GAMS: D4c4Applies the orthogonal transformation determined by
f08fef Names: f08fgf; nagf_lapackeig_dormtr; dormtr
Keywords: DORMTR; LAPACK; orthogonal transformations
GAMS: D4c4Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fnc; nag_zheev; zheev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHEEV
GAMS: D4a3
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fnf; nagf_lapackeig_zheev; zheev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHEEV
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fpc; nag_zheevx; zheevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVX
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fpf; nagf_lapackeig_zheevx; zheevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVX
GAMS: D4a3
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix (divide-and-conquer)
Names: f08fqc; nag_zheevd; zheevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVD
GAMS: D4a3, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix (divide-and-conquer)
Names: f08fqf; nagf_lapackeig_zheevd; zheevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVD
GAMS: D4a3, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix (Relatively Robust Representations)
Names: f08frc; nag_zheevr; zheevr
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; relatively robust representations; unitary transformations; ZHEEVR
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix (Relatively Robust Representations)
Names: f08frf; nagf_lapackeig_zheevr; zheevr
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; relatively robust representations; unitary transformations; ZHEEVR
GAMS: D4a3
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Names: f08fsc; nag_zhetrd; zhetrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHETRD
GAMS: D4c1b1
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Names: f08fsf; nagf_lapackeig_zhetrd; zhetrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHETRD
GAMS: D4c1b1
Generate unitary transformation matrix from reduction to tridiagonal form determined by
f08fsc Names: f08ftc; nag_zungtr; zungtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGTR
GAMS: D4c1b1Generate unitary transformation matrix from reduction to tridiagonal form determined by
f08fsf Names: f08ftf; nagf_lapackeig_zungtr; zungtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGTR
GAMS: D4c1b1Applies the unitary transformation matrix determined by
f08fsc Names: f08fuc; nag_zunmtr; zunmtr
Keywords: LAPACK; unitary transformations; ZUNMTR
GAMS: D4c4Applies the unitary transformation matrix determined by
f08fsf Names: f08fuf; nagf_lapackeig_zunmtr; zunmtr
Keywords: LAPACK; unitary transformations; ZUNMTR
GAMS: D4c4Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gac; nag_dspev; dspev
Keywords: DSPEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gaf; nagf_lapackeig_dspev; dspev
Keywords: DSPEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gbc; nag_dspevx; dspevx
Keywords: DSPEVX; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gbf; nagf_lapackeig_dspevx; dspevx
Keywords: DSPEVX; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gcc; nag_dspevd; dspevd
Keywords: divide-and-conquer method; DSPEVD; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gcf; nagf_lapackeig_dspevd; dspevd
Keywords: divide-and-conquer method; DSPEVD; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
Names: f08gec; nag_dsptrd; dsptrd
Keywords: DSPTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
Names: f08gef; nagf_lapackeig_dsptrd; dsptrd
Keywords: DSPTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by
f08gec Names: f08gfc; nag_dopgtr; dopgtr
Keywords: DOPGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1Generate orthogonal transformation matrix from reduction to tridiagonal form determined by
f08gef Names: f08gff; nagf_lapackeig_dopgtr; dopgtr
Keywords: DOPGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1Applies the orthogonal transformation determined by
f08gec Names: f08ggc; nag_dopmtr; dopmtr
Keywords: DOPMTR; LAPACK; orthogonal transformations
GAMS: D4c4Applies the orthogonal transformation determined by
f08gef Names: f08ggf; nagf_lapackeig_dopmtr; dopmtr
Keywords: DOPMTR; LAPACK; orthogonal transformations
GAMS: D4c4Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gnc; nag_zhpev; zhpev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEV
GAMS: D4a3
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gnf; nagf_lapackeig_zhpev; zhpev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEV
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gpc; nag_zhpevx; zhpevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEVX
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gpf; nagf_lapackeig_zhpevx; zhpevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEVX
GAMS: D4a3
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gqc; nag_zhpevd; zhpevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; ZHPEVD
GAMS: D4a3, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gqf; nagf_lapackeig_zhpevd; zhpevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; ZHPEVD
GAMS: D4a3, D4c2a
Performs a unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
Names: f08gsc; nag_zhptrd; zhptrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHPTRD
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
Names: f08gsf; nagf_lapackeig_zhptrd; zhptrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHPTRD
GAMS: D4c1b1
Generates a unitary transformation matrix from reduction to tridiagonal form determined by
f08gsc Names: f08gtc; nag_zupgtr; zupgtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUPGTR
GAMS: D4c1b1Generates a unitary transformation matrix from reduction to tridiagonal form determined by
f08gsf Names: f08gtf; nagf_lapackeig_zupgtr; zupgtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUPGTR
GAMS: D4c1b1Applies the unitary transformation matrix determined by
f08gsc Names: f08guc; nag_zupmtr; zupmtr
Keywords: LAPACK; unitary transformations; ZUPGTR
GAMS: D4c4Applies the unitary transformation matrix determined by
f08gsf Names: f08guf; nagf_lapackeig_zupmtr; zupmtr
Keywords: LAPACK; unitary transformations; ZUPGTR
GAMS: D4c4Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hac; nag_dsbev; dsbev
Keywords: DSBEV; LAPACK; matrix, band; QR algorithm; real, band, symmetric matrix
GAMS: D4a6
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08haf; nagf_lapackeig_dsbev; dsbev
Keywords: DSBEV; LAPACK; matrix, band; QR algorithm; real, band, symmetric matrix
GAMS: D4a6
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hbc; nag_dsbevx; dsbevx
Keywords: DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; real, band, symmetric matrix
GAMS: D4a6
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hbf; nagf_lapackeig_dsbevx; dsbevx
Keywords: DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; real, band, symmetric matrix
GAMS: D4a6
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric band matrix (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08hcc; nag_dsbevd; dsbevd
Keywords: divide-and-conquer method; DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, band, symmetric matrix
GAMS: D4a1, D4a6
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric band matrix (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08hcf; nagf_lapackeig_dsbevd; dsbevd
Keywords: divide-and-conquer method; DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, band, symmetric matrix
GAMS: D4a1, D4a6
Performs an orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
Names: f08hec; nag_dsbtrd; dsbtrd
Keywords: DSBTRD; LAPACK; matrix, band; orthogonal transformations; real, band, symmetric matrix
GAMS: D4c1b1
Performs an orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
Names: f08hef; nagf_lapackeig_dsbtrd; dsbtrd
Keywords: DSBTRD; LAPACK; matrix, band; orthogonal transformations; real, band, symmetric matrix
GAMS: D4c1b1
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hnc; nag_zhbev; zhbev
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; QR algorithm; unitary transformations; ZHBEV
GAMS: D4a3
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hnf; nagf_lapackeig_zhbev; zhbev
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; QR algorithm; unitary transformations; ZHBEV
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hpc; nag_zhbevx; zhbevx
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBEVX
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hpf; nagf_lapackeig_zhbevx; zhbevx
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBEVX
GAMS: D4a3
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian band matrix (divide-and-conquer)
Names: f08hqc; nag_zhbevd; zhbevd
Keywords: complex, band, Hermitian matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; ZHBEVD
GAMS: D4a3, D4a6
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian band matrix (divide-and-conquer)
Names: f08hqf; nagf_lapackeig_zhbevd; zhbevd
Keywords: complex, band, Hermitian matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; ZHBEVD
GAMS: D4a3, D4a6
Performs a unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
Names: f08hsc; nag_zhbtrd; zhbtrd
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBTRD
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
Names: f08hsf; nagf_lapackeig_zhbtrd; zhbtrd
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBTRD
GAMS: D4c1b1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jac; nag_dstev; dstev
Keywords: DSTEV; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jaf; nagf_lapackeig_dstev; dstev
Keywords: DSTEV; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jbc; nag_dstevx; dstevx
Keywords: bisection method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jbf; nagf_lapackeig_dstevx; dstevx
Keywords: bisection method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric tridiagonal matrix (divide-and-conquer)
Names: f08jcc; nag_dstevd; dstevd
Keywords: divide-and-conquer method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric tridiagonal matrix (divide-and-conquer)
Names: f08jcf; nagf_lapackeig_dstevd; dstevd
Keywords: divide-and-conquer method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix (Relatively Robust Representations)
Names: f08jdc; nag_dstevr; dstevr
Keywords: dqds algorithm; DSTEVR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix (Relatively Robust Representations)
Names: f08jdf; nagf_lapackeig_dstevr; dstevr
Keywords: dqds algorithm; DSTEVR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using the implicit QL or QR algorithm
Names: f08jec; nag_dsteqr; dsteqr
Keywords: DSTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using the implicit QL or QR algorithm
Names: f08jef; nagf_lapackeig_dsteqr; dsteqr
Keywords: DSTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from real symmetric positive definite matrix
Names: f08jgc; nag_dpteqr; dpteqr
Keywords: DPTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from real symmetric positive definite matrix
Names: f08jgf; nagf_lapackeig_dpteqr; dpteqr
Keywords: DPTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a matrix reduced to this form (divide-and-conquer)
Names: f08jhc; nag_dstedc; dstedc
Keywords: divide-and-conquer method; DSTEDC; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a matrix reduced to this form (divide-and-conquer)
Names: f08jhf; nagf_lapackeig_dstedc; dstedc
Keywords: divide-and-conquer method; DSTEDC; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues of real symmetric tridiagonal matrix by bisection
Names: f08jjc; nag_dstebz; dstebz
Keywords: bisection method; DSTEBZ; eigenvalues; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues of real symmetric tridiagonal matrix by bisection
Names: f08jjf; nagf_lapackeig_dstebz; dstebz
Keywords: bisection method; DSTEBZ; eigenvalues; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
Names: f08jkc; nag_dstein; dstein
Keywords: DSTEIN; eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
Names: f08jkf; nagf_lapackeig_dstein; dstein
Keywords: DSTEIN; eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a symmetric matrix reduced to this form (Relatively Robust Representations)
Names: f08jlc; nag_dstegr; dstegr
Keywords: dqds algorithm; DSTEGR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5, D4c2a
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a symmetric matrix reduced to this form (Relatively Robust Representations)
Names: f08jlf; nagf_lapackeig_dstegr; dstegr
Keywords: dqds algorithm; DSTEGR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using the implicit QL or QR algorithm
Names: f08jsc; nag_zsteqr; zsteqr
Keywords: eigenvalues; eigenvectors; LAPACK; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEQR
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using the implicit QL or QR algorithm
Names: f08jsf; nagf_lapackeig_zsteqr; zsteqr
Keywords: eigenvalues; eigenvectors; LAPACK; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEQR
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from complex Hermitian positive definite matrix
Names: f08juc; nag_zpteqr; zpteqr
Keywords: eigenvalues; eigenvectors; LAPACK; LDLH decomposition; real, symmetric, tridiagonal matrix; ZPTEQR
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from complex Hermitian positive definite matrix
Names: f08juf; nagf_lapackeig_zpteqr; zpteqr
Keywords: eigenvalues; eigenvectors; LAPACK; LDLH decomposition; real, symmetric, tridiagonal matrix; ZPTEQR
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (divide-and-conquer)
Names: f08jvc; nag_zstedc; zstedc
Keywords: divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEDC
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (divide-and-conquer)
Names: f08jvf; nagf_lapackeig_zstedc; zstedc
Keywords: divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEDC
GAMS: D4c2a, D4a5, D4a3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
Names: f08jxc; nag_zstein; zstein
Keywords: eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; ZSTEIN
GAMS: D4c3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
Names: f08jxf; nagf_lapackeig_zstein; zstein
Keywords: eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; ZSTEIN
GAMS: D4c3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (Relatively Robust Representations)
Names: f08jyc; nag_zstegr; zstegr
Keywords: dqds algorithm; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations; ZSTEGR
GAMS: D4c2a, D4a5, D4a3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (Relatively Robust Representations)
Names: f08jyf; nagf_lapackeig_zstegr; zstegr
Keywords: dqds algorithm; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations; ZSTEGR
GAMS: D4c2a, D4a5, D4a3
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition
Names: f08kac; nag_dgelss; dgelss
Keywords: DGELSS; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition
Names: f08kaf; nagf_lapackeig_dgelss; dgelss
Keywords: DGELSS; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f08kbc; nag_dgesvd; dgesvd
Keywords: DGESVD; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f08kbf; nagf_lapackeig_dgesvd; dgesvd
Keywords: DGESVD; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kcc; nag_dgelsd; dgelsd
Keywords: DGELSD; divide-and-conquer method; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kcf; nagf_lapackeig_dgelsd; dgelsd
Keywords: DGELSD; divide-and-conquer method; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08kdc; nag_dgesdd; dgesdd
Keywords: DGESDD; divide-and-conquer method; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08kdf; nagf_lapackeig_dgesdd; dgesdd
Keywords: DGESDD; divide-and-conquer method; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Performs an orthogonal reduction of real general rectangular matrix to bidiagonal form
Names: f08kec; nag_dgebrd; dgebrd
Keywords: DGEBRD; LAPACK; orthogonal transformations; real, m×n matrix
GAMS: D6
Performs an orthogonal reduction of real general rectangular matrix to bidiagonal form
Names: f08kef; nagf_lapackeig_dgebrd; dgebrd
Keywords: DGEBRD; LAPACK; orthogonal transformations; real, m×n matrix
GAMS: D6
Generates an orthogonal transformation matrices from reduction to bidiagonal form determined by
f08kec Names: f08kfc; nag_dorgbr; dorgbr
Keywords: DORGBR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation; orthogonal transformations
GAMS: D6Generates an orthogonal transformation matrices from reduction to bidiagonal form determined by
f08kef Names: f08kff; nagf_lapackeig_dorgbr; dorgbr
Keywords: DORGBR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation; orthogonal transformations
GAMS: D6Applies the orthogonal transformations from reduction to bidiagonal form determined by
f08kec Names: f08kgc; nag_dormbr; dormbr
Keywords: DORMBR; LAPACK; orthogonal transformations
GAMS: D6Applies the orthogonal transformations from reduction to bidiagonal form determined by
f08kef Names: f08kgf; nagf_lapackeig_dormbr; dormbr
Keywords: DORMBR; LAPACK; orthogonal transformations
GAMS: D6Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08khc; nag_dgejsv; dgejsv
Keywords: DGEJSV; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08khf; nagf_lapackeig_dgejsv; dgejsv
Keywords: DGEJSV; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kjc; nag_dgesvj; dgesvj
Keywords: DGESVJ; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kjf; nagf_lapackeig_dgesvj; dgesvj
Keywords: DGESVJ; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kmc; nag_dgesvdx; dgesvdx
Keywords: DGESVDX; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kmf; nagf_lapackeig_dgesvdx; dgesvdx
Keywords: DGESVDX; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition
Names: f08knc; nag_zgelss; zgelss
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSS
GAMS: D9a1
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition
Names: f08knf; nagf_lapackeig_zgelss; zgelss
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSS
GAMS: D9a1
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors
Names: f08kpc; nag_zgesvd; zgesvd
Keywords: complex, nonsymmetric matrix; finance; LAPACK; SVD, singular value decomposition; ZGESVD
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors
Names: f08kpf; nagf_lapackeig_zgesvd; zgesvd
Keywords: complex, nonsymmetric matrix; finance; LAPACK; SVD, singular value decomposition; ZGESVD
GAMS: D6
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kqc; nag_zgelsd; zgelsd
Keywords: complex, m×n matrix; divide-and-conquer method; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSD
GAMS: D9a1
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kqf; nagf_lapackeig_zgelsd; zgelsd
Keywords: complex, m×n matrix; divide-and-conquer method; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSD
GAMS: D9a1
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08krc; nag_zgesdd; zgesdd
Keywords: complex, nonsymmetric matrix; divide-and-conquer method; LAPACK; SVD, singular value decomposition; ZGESDD
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08krf; nagf_lapackeig_zgesdd; zgesdd
Keywords: complex, nonsymmetric matrix; divide-and-conquer method; LAPACK; SVD, singular value decomposition; ZGESDD
GAMS: D6
Performs a unitary reduction of complex general rectangular matrix to bidiagonal form
Names: f08ksc; nag_zgebrd; zgebrd
Keywords: complex, m×n matrix; LAPACK; unitary transformations; ZGEBRD
GAMS: D6
Performs a unitary reduction of complex general rectangular matrix to bidiagonal form
Names: f08ksf; nagf_lapackeig_zgebrd; zgebrd
Keywords: complex, m×n matrix; LAPACK; unitary transformations; ZGEBRD
GAMS: D6
Generates unitary transformation matrices from the reduction to bidiagonal form determined by
f08ksc Names: f08ktc; nag_zungbr; zungbr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGBR
GAMS: D6Generates unitary transformation matrices from the reduction to bidiagonal form determined by
f08ksf Names: f08ktf; nagf_lapackeig_zungbr; zungbr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGBR
GAMS: D6Applies the unitary transformations from reduction to bidiagonal form determined by
f08ksc Names: f08kuc; nag_zunmbr; zunmbr
Keywords: LAPACK; unitary transformations; ZUNMBR
GAMS: D6Applies the unitary transformations from reduction to bidiagonal form determined by
f08ksf Names: f08kuf; nagf_lapackeig_zunmbr; zunmbr
Keywords: LAPACK; unitary transformations; ZUNMBR
GAMS: D6Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08kvc; nag_zgejsv; zgejsv
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGEJSV
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08kvf; nagf_lapackeig_zgejsv; zgejsv
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGEJSV
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kwc; nag_zgesvj; zgesvj
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGESVJ
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kwf; nagf_lapackeig_zgesvj; zgesvj
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGESVJ
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a complex general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kzc; nag_zgesvdx; zgesvdx
Keywords: complex, nonsymmetric matrix; LAPACK; SVD, singular value decomposition; TGK; ZGESVDX
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a complex general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kzf; nagf_lapackeig_zgesvdx; zgesvdx
Keywords: complex, nonsymmetric matrix; LAPACK; SVD, singular value decomposition; TGK; ZGESVDX
GAMS: D6
Performs a reduction of real rectangular band matrix to upper bidiagonal form
Names: f08lec; nag_dgbbrd; dgbbrd
Keywords: DGBBRD; Givens rotations; LAPACK; matrix, band; real, band, m×n matrix
GAMS: D4c1b3
Performs a reduction of real rectangular band matrix to upper bidiagonal form
Names: f08lef; nagf_lapackeig_dgbbrd; dgbbrd
Keywords: DGBBRD; Givens rotations; LAPACK; matrix, band; real, band, m×n matrix
GAMS: D4c1b3
Reduction of complex rectangular band matrix to upper bidiagonal form
Names: f08lsc; nag_zgbbrd; zgbbrd
Keywords: Givens rotations; LAPACK; matrix, band; real, band, m×n matrix; ZGBBRD
GAMS: D4c1b3
Reduction of complex rectangular band matrix to upper bidiagonal form
Names: f08lsf; nagf_lapackeig_zgbbrd; zgbbrd
Keywords: Givens rotations; LAPACK; matrix, band; real, band, m×n matrix; ZGBBRD
GAMS: D4c1b3
Computes all or selected singular values of the singular value decomposition of a real square bidiagonal matrix, optionally computing the corresponding left and right singular vectors
Names: f08mbc; nag_dbdsvdx; dbdsvdx
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real square bidiagonal matrix, optionally computing the corresponding left and right singular vectors
Names: f08mbf; nagf_lapackeig_dbdsvdx; dbdsvdx
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes the singular value decomposition of a real bidiagonal matrix, optionally computing the singular vectors (divide-and-conquer)
Names: f08mdc; nag_dbdsdc; dbdsdc
Keywords: DBDSDC; divide-and-conquer method; LAPACK; matrix, band; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real bidiagonal matrix, optionally computing the singular vectors (divide-and-conquer)
Names: f08mdf; nagf_lapackeig_dbdsdc; dbdsdc
Keywords: DBDSDC; divide-and-conquer method; LAPACK; matrix, band; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from real general matrix
Names: f08mec; nag_dbdsqr; dbdsqr
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from real general matrix
Names: f08mef; nagf_lapackeig_dbdsqr; dbdsqr
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from complex general matrix
Names: f08msc; nag_zbdsqr; zbdsqr
Keywords: differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; ZBDSQR
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from complex general matrix
Names: f08msf; nagf_lapackeig_zbdsqr; zbdsqr
Keywords: differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; ZBDSQR
GAMS: D6
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix
Names: f08nac; nag_dgeev; dgeev
Keywords: DGEEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix
Names: f08naf; nagf_lapackeig_dgeev; dgeev
Keywords: DGEEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08nbc; nag_dgeevx; dgeevx
Keywords: balancing; condition number, matrix; DGEEVX; eigenvalues; eigenvectors; finance; forward error; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08nbf; nagf_lapackeig_dgeevx; dgeevx
Keywords: balancing; condition number, matrix; DGEEVX; eigenvalues; eigenvectors; finance; forward error; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Performs an orthogonal reduction of real general matrix to upper Hessenberg form
Names: f08nec; nag_dgehrd; dgehrd
Keywords: DGEHRD; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4c1b2
Performs an orthogonal reduction of real general matrix to upper Hessenberg form
Names: f08nef; nagf_lapackeig_dgehrd; dgehrd
Keywords: DGEHRD; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4c1b2
Generates an orthogonal transformation matrix from reduction to Hessenberg form determined by
f08nec Names: f08nfc; nag_dorghr; dorghr
Keywords: DORGHR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation
GAMS: D4c1b2Generates an orthogonal transformation matrix from reduction to Hessenberg form determined by
f08nef Names: f08nff; nagf_lapackeig_dorghr; dorghr
Keywords: DORGHR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation
GAMS: D4c1b2Applies the orthogonal transformation matrix from reduction to Hessenberg form determined by
f08nec Names: f08ngc; nag_dormhr; dormhr
Keywords: DORMHR; LAPACK; orthogonal transformations
GAMS: D4c4Applies the orthogonal transformation matrix from reduction to Hessenberg form determined by
f08nef Names: f08ngf; nagf_lapackeig_dormhr; dormhr
Keywords: DORMHR; LAPACK; orthogonal transformations
GAMS: D4c4Balances a real general matrix
Names: f08nhc; nag_dgebal; dgebal
Keywords: balancing; DGEBAL; LAPACK; real, nonsymmetric matrix
GAMS: D4c1a
Balances a real general matrix
Names: f08nhf; nagf_lapackeig_dgebal; dgebal
Keywords: balancing; DGEBAL; LAPACK; real, nonsymmetric matrix
GAMS: D4c1a
Transforms eigenvectors of real balanced matrix to those of original matrix supplied to
f08nhc Names: f08njc; nag_dgebak; dgebak
Keywords: balancing; DGEBAK; eigenvectors; LAPACK; real, nonsymmetric matrix
GAMS: D4c4Transforms eigenvectors of real balanced matrix to those of original matrix supplied to
f08nhf Names: f08njf; nagf_lapackeig_dgebak; dgebak
Keywords: balancing; DGEBAK; eigenvectors; LAPACK; real, nonsymmetric matrix
GAMS: D4c4Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix
Names: f08nnc; nag_zgeev; zgeev
Keywords: complex, nonsymmetric matrix; DGEEV; eigenvalues; eigenvectors; LAPACK
GAMS: D4a4
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix
Names: f08nnf; nagf_lapackeig_zgeev; zgeev
Keywords: complex, nonsymmetric matrix; DGEEV; eigenvalues; eigenvectors; LAPACK
GAMS: D4a4
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08npc; nag_zgeevx; zgeevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; DGEEV; eigenvalues; eigenvectors; finance; forward error; LAPACK
GAMS: D4a4
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08npf; nagf_lapackeig_zgeevx; zgeevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; DGEEV; eigenvalues; eigenvectors; finance; forward error; LAPACK
GAMS: D4a4
Performs a unitary reduction of complex general matrix to upper Hessenberg form
Names: f08nsc; nag_zgehrd; zgehrd
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGEHRD
GAMS: D4c1b2
Performs a unitary reduction of complex general matrix to upper Hessenberg form
Names: f08nsf; nagf_lapackeig_zgehrd; zgehrd
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGEHRD
GAMS: D4c1b2
Generates a unitary transformation matrix from reduction to Hessenberg form determined by
f08nsc Names: f08ntc; nag_zunghr; zunghr
Keywords: LAPACK; unitary matrix, generation; unitary matrix, generation; ZUNGHR
GAMS: D4c1b2Generates a unitary transformation matrix from reduction to Hessenberg form determined by
f08nsf Names: f08ntf; nagf_lapackeig_zunghr; zunghr
Keywords: LAPACK; unitary matrix, generation; unitary matrix, generation; ZUNGHR
GAMS: D4c1b2Applies the unitary transformation matrix from reduction to Hessenberg form determined by
f08nsc Names: f08nuc; nag_zunmhr; zunmhr
Keywords: LAPACK; unitary transformations; ZUNMHR
GAMS: D4c4Applies the unitary transformation matrix from reduction to Hessenberg form determined by
f08nsf Names: f08nuf; nagf_lapackeig_zunmhr; zunmhr
Keywords: LAPACK; unitary transformations; ZUNMHR
GAMS: D4c4Balances a complex general matrix
Names: f08nvc; nag_zgebal; zgebal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAL
GAMS: D4c1a
Balances a complex general matrix
Names: f08nvf; nagf_lapackeig_zgebal; zgebal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAL
GAMS: D4c1a
Transforms eigenvectors of complex balanced matrix to those of original matrix supplied to
f08nvc Names: f08nwc; nag_zgebak; zgebak
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAK
GAMS: D4c4Transforms eigenvectors of complex balanced matrix to those of original matrix supplied to
f08nvf Names: f08nwf; nagf_lapackeig_zgebak; zgebak
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAK
GAMS: D4c4Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors
Names: f08pac; nag_dgees; dgees
Keywords: DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors
Names: f08paf; nagf_lapackeig_dgees; dgees
Keywords: DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08pbc; nag_dgeesx; dgeesx
Keywords: condition number, matrix; DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08pbf; nagf_lapackeig_dgeesx; dgeesx
Keywords: condition number, matrix; DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes the eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
Names: f08pec; nag_dhseqr; dhseqr
Keywords: DHSEQR; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form
GAMS: D4c2b
Computes the eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
Names: f08pef; nagf_lapackeig_dhseqr; dhseqr
Keywords: DHSEQR; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form
GAMS: D4c2b
Computes selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
Names: f08pkc; nag_dhsein; dhsein
Keywords: DHSEIN; eigenvectors; inverse iteration; LAPACK; real, Hessenberg matrix
GAMS: D4c3
Computes selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
Names: f08pkf; nagf_lapackeig_dhsein; dhsein
Keywords: DHSEIN; eigenvectors; inverse iteration; LAPACK; real, Hessenberg matrix
GAMS: D4c3
Computes for complex square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
Names: f08pnc; nag_zgees; zgees
Keywords: complex, nonsymmetric matrix; eigenvalues; LAPACK; Schur form; Schur vectors; ZGEES
GAMS: D4a4
Computes for complex square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
Names: f08pnf; nagf_lapackeig_zgees; zgees
Keywords: complex, nonsymmetric matrix; eigenvalues; LAPACK; Schur form; Schur vectors; ZGEES
GAMS: D4a4
Computes for real square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors; also computes a reciprocal condition number for the average of the selected eigenvalues and for the right invariant subspace corresponding to these eigenvalues
Names: f08ppc; nag_zgeesx; zgeesx
Keywords: condition number, matrix; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors; ZGEESX
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors; also computes a reciprocal condition number for the average of the selected eigenvalues and for the right invariant subspace corresponding to these eigenvalues
Names: f08ppf; nagf_lapackeig_zgeesx; zgeesx
Keywords: condition number, matrix; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors; ZGEESX
GAMS: D4a2
Computes the eigenvalues and Schur factorization of complex upper Hessenberg matrix reduced from complex general matrix
Names: f08psc; nag_zhseqr; zhseqr
Keywords: complex, Hessenberg matrix; eigenvalues; LAPACK; Schur form; ZHSEQR
GAMS: D4c2b
Computes the eigenvalues and Schur factorization of complex upper Hessenberg matrix reduced from complex general matrix
Names: f08psf; nagf_lapackeig_zhseqr; zhseqr
Keywords: complex, Hessenberg matrix; eigenvalues; LAPACK; Schur form; ZHSEQR
GAMS: D4c2b
Computes selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
Names: f08pxc; nag_zhsein; zhsein
Keywords: complex, Hessenberg matrix; eigenvectors; inverse iteration; LAPACK; ZHSEIN
GAMS: D4c3
Computes selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
Names: f08pxf; nagf_lapackeig_zhsein; zhsein
Keywords: complex, Hessenberg matrix; eigenvectors; inverse iteration; LAPACK; ZHSEIN
GAMS: D4c3
Reorders a Schur factorization of real matrix using orthogonal similarity transformation
Names: f08qfc; nag_dtrexc; dtrexc
Keywords: DTREXC; LAPACK; orthogonal transformations; real, nonsymmetric matrix; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix using orthogonal similarity transformation
Names: f08qff; nagf_lapackeig_dtrexc; dtrexc
Keywords: DTREXC; LAPACK; orthogonal transformations; real, nonsymmetric matrix; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08qgc; nag_dtrsen; dtrsen
Keywords: condition number, matrix; DTREXC; LAPACK; orthogonal transformations; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08qgf; nagf_lapackeig_dtrsen; dtrsen
Keywords: condition number, matrix; DTREXC; LAPACK; orthogonal transformations; Schur form
GAMS: D4c
Solves the real Sylvester matrix equation AX+XB=C, A and B are upper quasi-triangular or transposes
Names: f08qhc; nag_dtrsyl; dtrsyl
Keywords: DTRSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Solves the real Sylvester matrix equation AX+XB=C, A and B are upper quasi-triangular or transposes
Names: f08qhf; nagf_lapackeig_dtrsyl; dtrsyl
Keywords: DTRSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Computes left and right eigenvectors of real upper quasi-triangular matrix
Names: f08qkc; nag_dtrevc; dtrevc
Keywords: DTREVC; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c3
Computes left and right eigenvectors of real upper quasi-triangular matrix
Names: f08qkf; nagf_lapackeig_dtrevc; dtrevc
Keywords: DTREVC; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c3
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
Names: f08qlc; nag_dtrsna; dtrsna
Keywords: condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
Names: f08qlf; nagf_lapackeig_dtrsna; dtrsna
Keywords: condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c
Reorders a Schur factorization of complex matrix using unitary similarity transformation
Names: f08qtc; nag_ztrexc; ztrexc
Keywords: LAPACK; Schur form; unitary transformations; ZTREXC
GAMS: D4c
Reorders a Schur factorization of complex matrix using unitary similarity transformation
Names: f08qtf; nagf_lapackeig_ztrexc; ztrexc
Keywords: LAPACK; Schur form; unitary transformations; ZTREXC
GAMS: D4c
Reorders a Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08quc; nag_ztrsen; ztrsen
Keywords: condition number, matrix; LAPACK; Schur form; ZTRSEN
GAMS: D4c
Reorders a Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08quf; nagf_lapackeig_ztrsen; ztrsen
Keywords: condition number, matrix; LAPACK; Schur form; ZTRSEN
GAMS: D4c
Solves the complex Sylvester matrix equation AX+XB=C, A and B are upper triangular or conjugate-transposes
Names: f08qvc; nag_ztrsyl; ztrsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTRSYL
GAMS: D8
Solves the complex Sylvester matrix equation AX+XB=C, A and B are upper triangular or conjugate-transposes
Names: f08qvf; nagf_lapackeig_ztrsyl; ztrsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTRSYL
GAMS: D8
Computes left and right eigenvectors of complex upper triangular matrix
Names: f08qxc; nag_ztrevc; ztrevc
Keywords: complex, triangular matrix; eigenvectors; LAPACK; ZTREVC
GAMS: D4c3
Computes left and right eigenvectors of complex upper triangular matrix
Names: f08qxf; nagf_lapackeig_ztrevc; ztrevc
Keywords: complex, triangular matrix; eigenvectors; LAPACK; ZTREVC
GAMS: D4c3
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix
Names: f08qyc; nag_ztrsna; ztrsna
Keywords: complex, triangular matrix; condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK
GAMS: D4c
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix
Names: f08qyf; nagf_lapackeig_ztrsna; ztrsna
Keywords: complex, triangular matrix; condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK
GAMS: D4c
Computes the CS decomposition of an orthogonal matrix partitioned into four real submatrices
Names: f08rac; nag_dorcsd; dorcsd
Keywords: complete CS decomposition; DORCSD; GSVD, generalized singular value decomposition; LAPACK; real, orthogonal matrix
GAMS: D6
Computes the CS decomposition of an orthogonal matrix partitioned into four real submatrices
Names: f08raf; nagf_lapackeig_dorcsd; dorcsd
Keywords: complete CS decomposition; DORCSD; GSVD, generalized singular value decomposition; LAPACK; real, orthogonal matrix
GAMS: D6
Computes the CS decomposition of a unitary matrix partitioned into four complex submatrices
Names: f08rnc; nag_zuncsd; zuncsd
Keywords: complete CS decomposition; complex, unitary matrix; GSVD, generalized singular value decomposition; LAPACK; ZUNCSD
GAMS: D6
Computes the CS decomposition of a unitary matrix partitioned into four complex submatrices
Names: f08rnf; nagf_lapackeig_zuncsd; zuncsd
Keywords: complete CS decomposition; complex, unitary matrix; GSVD, generalized singular value decomposition; LAPACK; ZUNCSD
GAMS: D6
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sac; nag_dsygv; dsygv
Keywords: DSYGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08saf; nagf_lapackeig_dsygv; dsygv
Keywords: DSYGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sbc; nag_dsygvx; dsygvx
Keywords: DSYGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sbf; nagf_lapackeig_dsygvx; dsygvx
Keywords: DSYGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08scc; nag_dsygvd; dsygvd
Keywords: divide-and-conquer method; DSYGVD; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08scf; nagf_lapackeig_dsygvd; dsygvd
Keywords: divide-and-conquer method; DSYGVD; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx,
B factorized by
f07fdc Names: f08sec; nag_dsygst; dsygst
Keywords: DSYGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1cPerforms a reduction to standard form of real symmetric-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx,
B factorized by
f07fdf Names: f08sef; nagf_lapackeig_dsygst; dsygst
Keywords: DSYGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1cComputes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08snc; nag_zhegv; zhegv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGV
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08snf; nagf_lapackeig_zhegv; zhegv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGV
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08spc; nag_zhegvx; zhegvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVX
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08spf; nagf_lapackeig_zhegvx; zhegvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVX
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08sqc; nag_zhegvd; zhegvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVD
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08sqf; nagf_lapackeig_zhegvd; zhegvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVD
GAMS: D4b3
Performs a reduction to standard form of complex Hermitian-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx,
B factorized by
f07frc Names: f08ssc; nag_zhegst; zhegst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHEGST
GAMS: D4c1cPerforms a reduction to standard form of complex Hermitian-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx,
B factorized by
f07frf Names: f08ssf; nagf_lapackeig_zhegst; zhegst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHEGST
GAMS: D4c1cComputes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tac; nag_dspgv; dspgv
Keywords: DSPGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08taf; nagf_lapackeig_dspgv; dspgv
Keywords: DSPGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tbc; nag_dspgvx; dspgvx
Keywords: DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tbf; nagf_lapackeig_dspgvx; dspgvx
Keywords: DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tcc; nag_dspgvd; dspgvd
Keywords: divide-and-conquer method; DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tcf; nagf_lapackeig_dspgvd; dspgvd
Keywords: divide-and-conquer method; DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx, packed storage,
B factorized by
f07gdc Names: f08tec; nag_dspgst; dspgst
Keywords: DSPGVX; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1cPerforms a reduction to standard form of real symmetric-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx, packed storage,
B factorized by
f07gdf Names: f08tef; nagf_lapackeig_dspgst; dspgst
Keywords: DSPGVX; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1cComputes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tnc; nag_zhpgv; zhpgv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGV
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tnf; nagf_lapackeig_zhpgv; zhpgv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGV
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tpc; nag_zhpgvx; zhpgvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVX
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tpf; nagf_lapackeig_zhpgvx; zhpgvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVX
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tqc; nag_zhpgvd; zhpgvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tqf; nagf_lapackeig_zhpgvd; zhpgvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4b3
Performs a reduction to standard form of complex Hermitian-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx, packed storage,
B factorized by
f07grc Names: f08tsc; nag_zhpgst; zhpgst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4c1cPerforms a reduction to standard form of complex Hermitian-definite generalized eigenproblem
Ax=λBx,
ABx=λx or
BAx=λx, packed storage,
B factorized by
f07grf Names: f08tsf; nagf_lapackeig_zhpgst; zhpgst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4c1cComputes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08uac; nag_dsbgv; dsbgv
Keywords: DSBGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08uaf; nagf_lapackeig_dsbgv; dsbgv
Keywords: DSBGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08ubc; nag_dsbgvx; dsbgvx
Keywords: DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08ubf; nagf_lapackeig_dsbgvx; dsbgvx
Keywords: DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08ucc; nag_dsbgvd; dsbgvd
Keywords: divide-and-conquer method; DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08ucf; nagf_lapackeig_dsbgvd; dsbgvd
Keywords: divide-and-conquer method; DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Performs a reduction of real symmetric-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08uec; nag_dsbgst; dsbgst
Keywords: DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4c1c
Performs a reduction of real symmetric-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08uef; nagf_lapackeig_dsbgst; dsbgst
Keywords: DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4c1c
Computes a split Cholesky factorization of real symmetric positive definite band matrix A
Names: f08ufc; nag_dpbstf; dpbstf
Keywords: Cholesky decomposition; DPBSTF; DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes a split Cholesky factorization of real symmetric positive definite band matrix A
Names: f08uff; nagf_lapackeig_dpbstf; dpbstf
Keywords: Cholesky decomposition; DPBSTF; DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08unc; nag_zhbgv; zhbgv
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGV
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08unf; nagf_lapackeig_zhbgv; zhbgv
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGV
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08upc; nag_zhbgvx; zhbgvx
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVX
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08upf; nagf_lapackeig_zhbgvx; zhbgvx
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVX
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08uqc; nag_zhbgvd; zhbgvd
Keywords: complex, band, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVD
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08uqf; nagf_lapackeig_zhbgvd; zhbgvd
Keywords: complex, band, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVD
GAMS: D4b5
Performs a reduction of complex Hermitian-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08usc; nag_zhbgst; zhbgst
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; ZHBGST
GAMS: D4c1c
Performs a reduction of complex Hermitian-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08usf; nagf_lapackeig_zhbgst; zhbgst
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; ZHBGST
GAMS: D4c1c
Computes a split Cholesky factorization of complex Hermitian positive definite band matrix A
Names: f08utc; nag_zpbstf; zpbstf
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; Split Cholesky factorization; ZPBSTF
GAMS: D2b2
Computes a split Cholesky factorization of complex Hermitian positive definite band matrix A
Names: f08utf; nagf_lapackeig_zpbstf; zpbstf
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; Split Cholesky factorization; ZPBSTF
GAMS: D2b2
Computes the generalized singular value decomposition of a real matrix pair
Names: f08vac; nag_dggsvd; dggsvd
Keywords: DGGSVD; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a real matrix pair
Names: f08vaf; nagf_lapackeig_dggsvd; dggsvd
Keywords: DGGSVD; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a real matrix pair
Names: f08vcc; nag_dggsvd3; dggsvd3
Keywords: DGGSVD3; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a real matrix pair
Names: f08vcf; nagf_lapackeig_dggsvd3; dggsvd3
Keywords: DGGSVD3; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vec; nag_dggsvp; dggsvp
Keywords: DGGSVP; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vef; nagf_lapackeig_dggsvp; dggsvp
Keywords: DGGSVP; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices, using BLAS-3, that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vgc; nag_dggsvp3; dggsvp3
Keywords: DGGSVP3; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices, using BLAS-3, that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vgf; nagf_lapackeig_dggsvp3; dggsvp3
Keywords: DGGSVP3; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a complex matrix pair
Names: f08vnc; nag_zggsvd; zggsvd
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD
GAMS: D6
Computes the generalized singular value decomposition of a complex matrix pair
Names: f08vnf; nagf_lapackeig_zggsvd; zggsvd
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a complex matrix pair
Names: f08vqc; nag_zggsvd3; zggsvd3
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD3
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a complex matrix pair
Names: f08vqf; nagf_lapackeig_zggsvd3; zggsvd3
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD3
GAMS: D6
Produces unitary matrices that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vsc; nag_zggsvp; zggsvp
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP
GAMS: D6
Produces unitary matrices that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vsf; nagf_lapackeig_zggsvp; zggsvp
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP
GAMS: D6
Produces unitary matrices, using BLAS-3, that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vuc; nag_zggsvp3; zggsvp3
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP3
GAMS: D6
Produces unitary matrices, using BLAS-3, that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vuf; nagf_lapackeig_zggsvp3; zggsvp3
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP3
GAMS: D6
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wac; nag_dggev; dggev
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08waf; nagf_lapackeig_dggev; dggev
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wbc; nag_dggevx; dggevx
Keywords: balancing; condition number, matrix; DGGEVX; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wbf; nagf_lapackeig_dggevx; dggevx
Keywords: balancing; condition number, matrix; DGGEVX; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wcc; nag_dggev3; dggev3
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wcf; nagf_lapackeig_dggev3; dggev3
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Performs an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wec; nag_dgghrd; dgghrd
Keywords: DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wef; nagf_lapackeig_dgghrd; dgghrd
Keywords: DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs, using BLAS-3, an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wfc; nag_dgghd3; dgghd3
Keywords: DGGHD3; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs, using BLAS-3, an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wff; nagf_lapackeig_dgghd3; dgghd3
Keywords: DGGHD3; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Balances a pair of real, square, matrices
Names: f08whc; nag_dggbal; dggbal
Keywords: balancing; DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK
GAMS: D4b2
Balances a pair of real, square, matrices
Names: f08whf; nagf_lapackeig_dggbal; dggbal
Keywords: balancing; DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK
GAMS: D4b2
Transforms eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to
f08whc Names: f08wjc; nag_dggbak; dggbak
Keywords: balancing; DGGBAK; eigenproblem, generalized; eigenvectors; generalized eigenproblem; LAPACK
GAMS: D4b2Transforms eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to
f08whf Names: f08wjf; nagf_lapackeig_dggbak; dggbak
Keywords: balancing; DGGBAK; eigenproblem, generalized; eigenvectors; generalized eigenproblem; LAPACK
GAMS: D4b2Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wnc; nag_zggev; zggev
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wnf; nagf_lapackeig_zggev; zggev
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wpc; nag_zggevx; zggevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; ZGGEVX
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wpf; nagf_lapackeig_zggevx; zggevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; ZGGEVX
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wqc; nag_zggev3; zggev3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV3
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wqf; nagf_lapackeig_zggev3; zggev3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV3
GAMS: D4b4
Performs, using BLAS-3, a unitary reduction of a pair of complex general matrices to generalized upper Hessenberg form
Names: f08wtc; nag_zgghd3; zgghd3
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGGHD3
GAMS: D4b4
Performs, using BLAS-3, a unitary reduction of a pair of complex general matrices to generalized upper Hessenberg form
Names: f08wtf; nagf_lapackeig_zgghd3; zgghd3
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGGHD3
GAMS: D4b4
Balances a pair of complex, square, matrices
Names: f08wvc; nag_zggbal; zggbal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGGBAL
GAMS: D4b4
Balances a pair of complex, square, matrices
Names: f08wvf; nagf_lapackeig_zggbal; zggbal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGGBAL
GAMS: D4b4
Transforms eigenvectors of a pair of complex balanced matrices to those of original matrix pair supplied to
f08wvc Names: f08wwc; nag_zggbak; zggbak
Keywords: balancing; complex, nonsymmetric matrix; eigenvectors; LAPACK; ZGGBAL
GAMS: D4b4Transforms eigenvectors of a pair of complex balanced matrices to those of original matrix pair supplied to
f08wvf Names: f08wwf; nagf_lapackeig_zggbak; zggbak
Keywords: balancing; complex, nonsymmetric matrix; eigenvectors; LAPACK; ZGGBAL
GAMS: D4b4Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xac; nag_dgges; dgges
Keywords: DGGES; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xaf; nagf_lapackeig_dgges; dgges
Keywords: DGGES; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xbc; nag_dggesx; dggesx
Keywords: condition number, matrix; DGGESX; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xbf; nagf_lapackeig_dggesx; dggesx
Keywords: condition number, matrix; DGGESX; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xcc; nag_dgges3; dgges3
Keywords: DGGES3; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xcf; nagf_lapackeig_dgges3; dgges3
Keywords: DGGES3; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
Names: f08xec; nag_dhgeqz; dhgeqz
Keywords: DHGEQZ; eigenvalues; generalized Schur form; LAPACK; real, Hessenberg matrix
GAMS: D4b2
Computes eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
Names: f08xef; nagf_lapackeig_dhgeqz; dhgeqz
Keywords: DHGEQZ; eigenvalues; generalized Schur form; LAPACK; real, Hessenberg matrix
GAMS: D4b2
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xnc; nag_zgges; zgges
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xnf; nagf_lapackeig_zgges; zgges
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xpc; nag_zggesx; zggesx
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xpf; nagf_lapackeig_zggesx; zggesx
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xqc; nag_zgges3; zgges3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES3
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xqf; nagf_lapackeig_zgges3; zgges3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES3
GAMS: D4b4
Eigenvalues and generalized Schur factorization of complex generalized upper Hessenberg form reduced from a pair of complex, square, matrices
Names: f08xsc; nag_zhgeqz; zhgeqz
Keywords: complex, Hermitian, indefinite matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; QZ algorithm; ZHGEQZ
GAMS: D4b4
Eigenvalues and generalized Schur factorization of complex generalized upper Hessenberg form reduced from a pair of complex, square, matrices
Names: f08xsf; nagf_lapackeig_zhgeqz; zhgeqz
Keywords: complex, Hermitian, indefinite matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; QZ algorithm; ZHGEQZ
GAMS: D4b4
Computes the generalized singular value decomposition of a real upper triangular (or trapezoidal) matrix pair
Names: f08yec; nag_dtgsja; dtgsja
Keywords: DTGSJA; GSVD, generalized singular value decomposition; LAPACK; real, trapezoidal matrix; real, triangular matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a real upper triangular (or trapezoidal) matrix pair
Names: f08yef; nagf_lapackeig_dtgsja; dtgsja
Keywords: DTGSJA; GSVD, generalized singular value decomposition; LAPACK; real, trapezoidal matrix; real, triangular matrix; SVD, generalized
GAMS: D6
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation
Names: f08yfc; nag_dtgexc; dtgexc
Keywords: DTGEXC; generalized Schur form; LAPACK; orthogonal transformations
GAMS: D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation
Names: f08yff; nagf_lapackeig_dtgexc; dtgexc
Keywords: DTGEXC; generalized Schur form; LAPACK; orthogonal transformations
GAMS: D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08ygc; nag_dtgsen; dtgsen
Keywords: condition number, matrix; DTGSEN; eigenvalues; generalized Schur form; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b, D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08ygf; nagf_lapackeig_dtgsen; dtgsen
Keywords: condition number, matrix; DTGSEN; eigenvalues; generalized Schur form; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b, D4c
Solves the real-valued, generalized, quasi-trangular, Sylvester equation
Names: f08yhc; nag_dtgsyl; dtgsyl
Keywords: DTGSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Solves the real-valued, generalized, quasi-trangular, Sylvester equation
Names: f08yhf; nagf_lapackeig_dtgsyl; dtgsyl
Keywords: DTGSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Computes right and left generalized eigenvectors of the matrix pair (A,B) which is assumed to be in generalized upper Schur form
Names: f08ykc; nag_dtgevc; dtgevc
Keywords: DTGEVC; eigenvectors; generalized Schur form; LAPACK
GAMS: D4b2
Computes right and left generalized eigenvectors of the matrix pair (A,B) which is assumed to be in generalized upper Schur form
Names: f08ykf; nagf_lapackeig_dtgevc; dtgevc
Keywords: DTGEVC; eigenvectors; generalized Schur form; LAPACK
GAMS: D4b2
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a real matrix pair in generalized real Schur canonical form
Names: f08ylc; nag_dtgsna; dtgsna
Keywords: condition number, matrix; DTGSNA; generalized Schur form; LAPACK; real, nonsymmetric matrix
GAMS: D4c
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a real matrix pair in generalized real Schur canonical form
Names: f08ylf; nagf_lapackeig_dtgsna; dtgsna
Keywords: condition number, matrix; DTGSNA; generalized Schur form; LAPACK; real, nonsymmetric matrix
GAMS: D4c
Computes the generalized singular value decomposition of a complex upper triangular (or trapezoidal) matrix pair
Names: f08ysc; nag_ztgsja; ztgsja
Keywords: complex, trapezoidal matrix; complex, triangular matrix; GSVD, generalized singular value decomposition; LAPACK; ZTGSJA
GAMS: D6
Computes the generalized singular value decomposition of a complex upper triangular (or trapezoidal) matrix pair
Names: f08ysf; nagf_lapackeig_ztgsja; ztgsja
Keywords: complex, trapezoidal matrix; complex, triangular matrix; GSVD, generalized singular value decomposition; LAPACK; ZTGSJA
GAMS: D6
Reorders the generalized Schur decomposition of a complex matrix pair using an unitary equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08yuc; nag_ztgsen; ztgsen
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenvalues; generalized Schur form; LAPACK; unitary transformations; ZTGEXC
GAMS: D4b, D4c
Reorders the generalized Schur decomposition of a complex matrix pair using an unitary equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08yuf; nagf_lapackeig_ztgsen; ztgsen
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenvalues; generalized Schur form; LAPACK; unitary transformations; ZTGEXC
GAMS: D4b, D4c
Solves the complex generalized Sylvester equation
Names: f08yvc; nag_ztgsyl; ztgsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTGSYL
GAMS: D8
Solves the complex generalized Sylvester equation
Names: f08yvf; nagf_lapackeig_ztgsyl; ztgsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTGSYL
GAMS: D8
Computes left and right eigenvectors of a pair of complex upper triangular matrices
Names: f08yxc; nag_ztgevc; ztgevc
Keywords: complex, triangular matrix; eigenvectors; generalized Schur form; LAPACK; ZTGEVC
GAMS: D4b4
Computes left and right eigenvectors of a pair of complex upper triangular matrices
Names: f08yxf; nagf_lapackeig_ztgevc; ztgevc
Keywords: complex, triangular matrix; eigenvectors; generalized Schur form; LAPACK; ZTGEVC
GAMS: D4b4
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a complex matrix pair in generalized Schur canonical form
Names: f08yyc; nag_ztgsna; ztgsna
Keywords: complex, nonsymmetric matrix; condition number, matrix; generalized Schur form; LAPACK; ZTGSNA
GAMS: D4c
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a complex matrix pair in generalized Schur canonical form
Names: f08yyf; nagf_lapackeig_ztgsna; ztgsna
Keywords: complex, nonsymmetric matrix; condition number, matrix; generalized Schur form; LAPACK; ZTGSNA
GAMS: D4c
Solves the real linear equality-constrained least squares (LSE) problem
Names: f08zac; nag_dgglse; dgglse
Keywords: DGGLSE; LAPACK; linear least squares; real, m×n matrix; RQ factorizations
GAMS: D9b1
Solves the real linear equality-constrained least squares (LSE) problem
Names: f08zaf; nagf_lapackeig_dgglse; dgglse
Keywords: DGGLSE; LAPACK; linear least squares; real, m×n matrix; RQ factorizations
GAMS: D9b1
Solves a real general Gauss–Markov linear model (GLM) problem
Names: f08zbc; nag_dggglm; dggglm
Keywords: DGGGLM; Gauss–Markov linear model; LAPACK; QR factorization; real, m×n matrix
GAMS: D9b1
Solves a real general Gauss–Markov linear model (GLM) problem
Names: f08zbf; nagf_lapackeig_dggglm; dggglm
Keywords: DGGGLM; Gauss–Markov linear model; LAPACK; QR factorization; real, m×n matrix
GAMS: D9b1
Computes a generalized QR factorization of a real matrix pair
Names: f08zec; nag_dggqrf; dggqrf
Keywords: DGGQRF; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Computes a generalized QR factorization of a real matrix pair
Names: f08zef; nagf_lapackeig_dggqrf; dggqrf
Keywords: DGGQRF; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Computes a generalized RQ factorization of a real matrix pair
Names: f08zfc; nag_dggrqf; dggrqf
Keywords: DGGRQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
Computes a generalized RQ factorization of a real matrix pair
Names: f08zff; nagf_lapackeig_dggrqf; dggrqf
Keywords: DGGRQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
Solves the complex linear equality-constrained least squares (LSE) problem
Names: f08znc; nag_zgglse; zgglse
Keywords: complex, m×n matrix; LAPACK; linear least squares; RQ factorizations; ZGGLSE
GAMS: D9b1
Solves the complex linear equality-constrained least squares (LSE) problem
Names: f08znf; nagf_lapackeig_zgglse; zgglse
Keywords: complex, m×n matrix; LAPACK; linear least squares; RQ factorizations; ZGGLSE
GAMS: D9b1
Solves a complex general Gauss–Markov linear model (GLM) problem
Names: f08zpc; nag_zggglm; zggglm
Keywords: complex, m×n matrix; Gauss–Markov linear model; LAPACK; ZGGGLM
GAMS: D9b1
Solves a complex general Gauss–Markov linear model (GLM) problem
Names: f08zpf; nagf_lapackeig_zggglm; zggglm
Keywords: complex, m×n matrix; Gauss–Markov linear model; LAPACK; ZGGGLM
GAMS: D9b1
Computes a generalized QR factorization of a complex matrix pair
Names: f08zsc; nag_zggqrf; zggqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGGQRF
GAMS: D5
Computes a generalized QR factorization of a complex matrix pair
Names: f08zsf; nagf_lapackeig_zggqrf; zggqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGGQRF
GAMS: D5
Computes a generalized RQ factorization of a complex matrix pair
Names: f08ztc; nag_zggrqf; zggrqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGGRQF
GAMS: D5
Computes a generalized RQ factorization of a complex matrix pair
Names: f08ztf; nagf_lapackeig_zggrqf; zggrqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGGRQF
GAMS: D5
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f10cac; nag_rnla_svd_rowext_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f10caf; nagf_rnla_svd_rowext_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes a fast random projection of a real matrix using a discrete cosine transform
Names: f10dac; nag_rnla_randproj_dct_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes a fast random projection of a real matrix using a discrete cosine transform
Names: f10daf; nagf_rnla_randproj_dct_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bec; nag_sparse_nsym_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bef; nagf_sparse_real_gen_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bsc; nag_sparse_nherm_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bsf; nagf_sparse_complex_gen_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by
f11daf Names: f11dcf; nagf_sparse_real_gen_solve_ilu
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; incomplete
LU factorization; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB, or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
Names: f11def; nagf_sparse_real_gen_solve_jacssor
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; iterative methods, linear equations; Jacobi preconditioning; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; SSOR method, symmetric successive over-relaxation; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Real sparse nonsymmetric linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dfc; nag_sparse_nsym_precon_bdilu
Keywords: additive Schwarz preconditioner; incomplete LU factorization; linear equations, pre-conditioners; real, sparse matrix
GAMS: D2a4, D2e
Real sparse nonsymmetric linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dff; nagf_sparse_real_gen_precon_bdilu
Keywords: additive Schwarz preconditioner; incomplete LU factorization; linear equations, pre-conditioners; real, sparse matrix
GAMS: D2a4, D2e
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete
LU block diagonal preconditioner computed by
f11dfc Names: f11dgc; nag_sparse_nsym_precon_bdilu_solve
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; incomplete
LU factorization; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2e,
D2a4Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete
LU block diagonal preconditioner computed by
f11dff Names: f11dgf; nagf_sparse_real_gen_solve_bdilu
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; incomplete
LU factorization; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2e,
D2a4Real, sparse, symmetric or nonsymmetric, linear systems, line Jacobi preconditioner
Names: f11dkc; nag_sparse_nsym_jacobi
Keywords: Jacobi preconditioning; linear equations, pre-conditioners; real, sparse, symmetric matrix; real, sparse matrix
GAMS: D1b4, D2b4, D2e
Real, sparse, symmetric or nonsymmetric, linear systems, line Jacobi preconditioner
Names: f11dkf; nagf_sparse_real_gen_precon_jacobi
Keywords: Jacobi preconditioning; linear equations, pre-conditioners; real, sparse, symmetric matrix; real, sparse matrix
GAMS: D1b4, D2b4, D2e
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by
f11dnc (Black Box)
Names: f11dqc; nag_sparse_nherm_fac_sol
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete
LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by
f11dnf (Black Box)
Names: f11dqf; nagf_sparse_complex_gen_solve_ilu
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete
LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner Black Box
Names: f11dsc; nag_sparse_nherm_sol
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; Jacobi preconditioning; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; SSOR method, symmetric successive over-relaxation; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner Black Box
Names: f11dsf; nagf_sparse_complex_gen_solve_jacssor
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; Jacobi preconditioning; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; SSOR method, symmetric successive over-relaxation; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Complex, sparse, non-Hermitian linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dtc; nag_sparse_nherm_precon_bdilu
Keywords: additive Schwarz preconditioner; complex, sparse matrix; incomplete LU factorization; linear equations, pre-conditioners
GAMS: D2c4
Complex, sparse, non-Hermitian linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dtf; nagf_sparse_complex_gen_precon_bdilu
Keywords: additive Schwarz preconditioner; complex, sparse matrix; incomplete LU factorization; linear equations, pre-conditioners
GAMS: D2c4
Solution of complex, sparse, non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete
LU block diagonal preconditioner computed by
f11dtc Names: f11duc; nag_sparse_nherm_precon_bdilu_solve
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete
LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4Solution of complex, sparse, non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete
LU block diagonal preconditioner computed by
f11dtf Names: f11duf; nagf_sparse_complex_gen_solve_bdilu
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete
LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4Complex, sparse, Hermitian or non-Hermitian, linear systems, line Jacobi preconditioner
Names: f11dxc; nag_sparse_nherm_jacobi
Keywords: complex, sparse matrix; Jacobi preconditioning; linear equations, pre-conditioners
GAMS: D2b4, D2e
Complex, sparse, Hermitian or non-Hermitian, linear systems, line Jacobi preconditioner
Names: f11dxf; nagf_sparse_complex_gen_precon_jacobi
Keywords: complex, sparse matrix; Jacobi preconditioning; linear equations, pre-conditioners
GAMS: D2b4, D2e
Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos method or the MINRES algorithm
Names: f11gec; nag_sparse_sym_basic_solver
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; MINRES, iterative linear equation solver; real, sparse, symmetric matrix
GAMS: D2b4
Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos method or the MINRES algorithm
Names: f11gef; nagf_sparse_real_symm_basic_solver
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; MINRES, iterative linear equation solver; real, sparse, symmetric matrix
GAMS: D2b4
Complex sparse Hermitian linear systems, preconditioned conjugate gradient or Lanczos
Names: f11gsc; nag_sparse_herm_basic_solver
Keywords: CGS, conjugate gradient method; complex, Hermitian, sparse matrix; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method
GAMS: D2b4
Complex sparse Hermitian linear systems, preconditioned conjugate gradient or Lanczos
Names: f11gsf; nagf_sparse_complex_herm_basic_solver
Keywords: CGS, conjugate gradient method; complex, Hermitian, sparse matrix; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method
GAMS: D2b4
Real sparse symmetric matrix, incomplete Cholesky factorization
Names: f11jaf; nagf_sparse_real_symm_precon_ichol
Keywords: incomplete Cholesky factorization; linear equations, pre-conditioners; real, sparse, symmetric matrix
GAMS: D2b4
Solver with incomplete Cholesky preconditioning (symmetric)
Names: f11jcc; nag_sparse_sym_chol_sol
Keywords: CGS, conjugate gradient method; incomplete Cholesky factorization; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix
GAMS: D2b4
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, preconditioner computed by
f11jaf (Black Box)
Names: f11jcf; nagf_sparse_real_symm_solve_ichol
Keywords: CGS, conjugate gradient method; incomplete Cholesky factorization; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix
GAMS: D2b4Solver with Jacobi, SSOR, or no preconditioning (symmetric)
Names: f11jec; nag_sparse_sym_sol
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Jacobi preconditioning; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix; SSOR method, symmetric successive over-relaxation
GAMS: D2b4
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
Names: f11jef; nagf_sparse_real_symm_solve_jacssor
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Jacobi preconditioning; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix; SSOR method, symmetric successive over-relaxation
GAMS: D2b4
Complex sparse Hermitian matrix, incomplete Cholesky factorization
Names: f11jnc; nag_sparse_herm_chol_fac
Keywords: complex, Hermitian, sparse matrix; incomplete Cholesky factorization
GAMS: D2d4
Complex sparse Hermitian matrix, incomplete Cholesky factorization
Names: f11jnf; nagf_sparse_complex_herm_precon_ichol
Keywords: complex, Hermitian, sparse matrix; incomplete Cholesky factorization
GAMS: D2d4
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed by
f11jnc (Black Box)
Names: f11jqc; nag_sparse_herm_chol_sol
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations
GAMS: D2d4Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed by
f11jnf (Black Box)
Names: f11jqf; nagf_sparse_complex_herm_solve_ilu
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations
GAMS: D2d4Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
Names: f11jsc; nag_sparse_herm_sol
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Jacobi method; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations; SSOR method, symmetric successive over-relaxation
GAMS: D2d4
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
Names: f11jsf; nagf_sparse_complex_herm_solve_jacssor
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Jacobi method; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations; SSOR method, symmetric successive over-relaxation
GAMS: D2d4
Real sparse nonsymmetric linear systems, setup for
f11mec Names: f11mdc; nag_superlu_column_permutation
Keywords: linear equations, direct method, setup; real, sparse matrix
GAMS: D2a4Real sparse nonsymmetric linear systems, setup for
f11mef Names: f11mdf; nagf_sparse_direct_real_gen_setup
Keywords: linear equations, direct method, setup; real, sparse matrix
GAMS: D2a4LU factorization of real sparse matrix
Names: f11mec; nag_superlu_lu_factorize
Keywords: discretised system; LU decomposition; real, sparse matrix; sparse linear system
GAMS: D2a4
LU factorization of real sparse matrix
Names: f11mef; nagf_sparse_direct_real_gen_lu
Keywords: discretised system; LU decomposition; real, sparse matrix; sparse linear system
GAMS: D2a4
Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
Names: f11mfc; nag_superlu_solve_lu
Keywords: discretised system; linear equations; real, sparse matrix; sparse linear system
GAMS: D2a4
Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
Names: f11mff; nagf_sparse_direct_real_gen_solve
Keywords: discretised system; linear equations; real, sparse matrix; sparse linear system
GAMS: D2a4
Estimate condition number of real matrix, matrix already factorized by
f11mec Names: f11mgc; nag_superlu_condition_number_lu
Keywords: condition number, matrix; real, sparse matrix
GAMS: D2a4Estimate condition number of real matrix, matrix already factorized by
f11mef Names: f11mgf; nagf_sparse_direct_real_gen_cond
Keywords: condition number, matrix; real, sparse matrix
GAMS: D2a4Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f11mhc; nag_superlu_refine_lu
Keywords: backward error; forward error; linear equations; real, sparse matrix
GAMS: D2a4
Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f11mhf; nagf_sparse_direct_real_gen_refine
Keywords: backward error; forward error; linear equations; real, sparse matrix
GAMS: D2a4
Real sparse nonsymmetric matrix-matrix multiply, compressed column storage
Names: f11mkc; nag_superlu_matrix_product
Keywords: multiply, matrix; real, sparse matrix
GAMS: D2e
Real sparse nonsymmetric matrix-matrix multiply, compressed column storage
Names: f11mkf; nagf_sparse_direct_real_gen_matmul
Keywords: multiply, matrix; real, sparse matrix
GAMS: D2e
1-norm, ∞-norm, largest absolute element, real, square, sparse matrix
Names: f11mlc; nag_superlu_matrix_norm
Keywords: 1-norm; absolute value; infinity-norm; norm, matrix; real, sparse matrix
GAMS: D1b2
1-norm, ∞-norm, largest absolute element, real, square, sparse matrix
Names: f11mlf; nagf_sparse_direct_real_gen_norm
Keywords: 1-norm; absolute value; infinity-norm; norm, matrix; real, sparse matrix
GAMS: D1b2
Real, sparse, nonsymmetric matrix-vector multiply
Names: f11xac; nag_sparse_nsym_matvec
Keywords: multiply, matrix; real, sparse matrix
GAMS: D1b4, D2e
Real, sparse, nonsymmetric matrix-vector multiply
Names: f11xaf; nagf_sparse_real_gen_matvec
Keywords: multiply, matrix; real, sparse matrix
GAMS: D1b4, D2e
Real sparse symmetric matrix-vector multiply
Names: f11xec; nag_sparse_sym_matvec
Keywords: multiply, matrix; real, sparse, symmetric matrix
GAMS: D1b4, D2e
Real sparse symmetric matrix-vector multiply
Names: f11xef; nagf_sparse_real_symm_matvec
Keywords: multiply, matrix; real, sparse, symmetric matrix
GAMS: D1b4, D2e
Complex sparse non-Hermitian matrix-vector multiply
Names: f11xnc; nag_sparse_nherm_matvec
Keywords: complex, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Complex sparse non-Hermitian matrix-vector multiply
Names: f11xnf; nagf_sparse_complex_gen_matvec
Keywords: complex, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Complex sparse Hermitian matrix-vector multiply
Names: f11xsc; nag_sparse_herm_matvec
Keywords: complex, Hermitian, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Complex sparse Hermitian matrix-vector multiply
Names: f11xsf; nagf_sparse_complex_herm_matvec
Keywords: complex, Hermitian, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, reverse communication
Names: f12abc; nag_real_sparse_eigensystem_iter
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, reverse communication
Names: f12abf; nagf_sparseig_real_iter
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, postprocessing for
f12abc Names: f12acc; nag_real_sparse_eigensystem_sol
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, postprocessing for
f12abf Names: f12acf; nagf_sparseig_real_proc
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded eigenproblem, driver
Names: f12agc; nag_real_banded_sparse_eigensystem_sol
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded eigenproblem, driver
Names: f12agf; nagf_sparseig_real_band_solve
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, reverse communication
Names: f12apc; nag_complex_sparse_eigensystem_iter
Keywords: complex, sparse matrix; eigenvalues; eigenvectors; sparse eigenproblem; sparse generalized eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, reverse communication
Names: f12apf; nagf_sparseig_complex_iter
Keywords: complex, sparse matrix; eigenvalues; eigenvectors; sparse eigenproblem; sparse generalized eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, postprocessing for
f12apc Names: f12aqc; nag_complex_sparse_eigensystem_sol
Keywords: complex, sparse matrix; sparse eigenproblem, postprocessing
GAMS: D4a7Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, postprocessing for
f12apf Names: f12aqf; nagf_sparseig_complex_proc
Keywords: complex, sparse matrix; sparse eigenproblem, postprocessing
GAMS: D4a7Selected eigenvalues and, optionally, eigenvectors of complex non-Hermitian banded eigenproblem, driver
Names: f12auc; nag_complex_banded_eigensystem_solve
Keywords: complex, band matrix; eigenproblem, banded; eigenvalues; eigenvectors
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of complex non-Hermitian banded eigenproblem, driver
Names: f12auf; nagf_sparseig_complex_band_solve
Keywords: complex, band matrix; eigenproblem, banded; eigenvalues; eigenvectors
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, reverse communication
Names: f12fbc; nag_real_symm_sparse_eigensystem_iter
Keywords: eigenvalues; eigenvectors; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, reverse communication
Names: f12fbf; nagf_sparseig_real_symm_iter
Keywords: eigenvalues; eigenvectors; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, postprocessing for
f12fbc Names: f12fcc; nag_real_symm_sparse_eigensystem_sol
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, postprocessing
GAMS: D4a7Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, postprocessing for
f12fbf Names: f12fcf; nagf_sparseig_real_symm_proc
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, postprocessing
GAMS: D4a7Selected eigenvalues and, optionally, eigenvectors of a real symmetric banded eigenproblem, driver
Names: f12fgc; nag_real_symm_banded_sparse_eigensystem_sol
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band, symmetric matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real symmetric banded eigenproblem, driver
Names: f12fgf; nagf_sparseig_real_symm_band_solve
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band, symmetric matrix
GAMS: D4a6
Set a single option from a string (
f12jjc,
f12jkc,
f12jrc,
f12jsc,
f12jtc,
f12juc and
f12jvc)
Names: f12jbc; nag_sparseig_feast_option
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS: Set a single option from a string (
f12jjf,
f12jkf,
f12jrf,
f12jsf,
f12jtf,
f12juf and
f12jvf)
Names: f12jbf; nagf_sparseig_feast_option
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS: Setup routine for
f12jjc and
f12jrc. Computes nodes and weights for an elliptical contour, symmetric about the real line
Names: f12jec; nag_sparseig_feast_symm_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS: Setup routine for
f12jjf and
f12jrf. Computes nodes and weights for an elliptical contour, symmetric about the real line
Names: f12jef; nagf_sparseig_feast_symm_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS: Setup routine for
f12jkc,
f12jsc,
f12jtc,
f12juc and
f12jvc. Computes nodes and weights for an elliptical contour in the complex plane
Names: f12jfc; nag_sparseig_feast_gen_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS: Setup routine for
f12jkf,
f12jsf,
f12jtf,
f12juf and
f12jvf. Computes nodes and weights for an elliptical contour in the complex plane
Names: f12jff; nagf_sparseig_feast_gen_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS: Setup routine for
f12jkc,
f12jsc,
f12jtc,
f12juc and
f12jvc. Creates nodes and weights for a custom contour in the complex plane
Names: f12jgc; nag_sparseig_feast_custom_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS: Setup routine for
f12jkf,
f12jsf,
f12jtf,
f12juf and
f12jvf. Creates nodes and weights for a custom contour in the complex plane
Names: f12jgf; nagf_sparseig_feast_custom_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS: Selected eigenvalues and eigenvectors of a real symmetric eigenproblem, reverse communication driver
Names: f12jjc; nag_sparseig_feast_real_symm_solve
Keywords: eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a real symmetric eigenproblem, reverse communication driver
Names: f12jjf; nagf_sparseig_feast_real_symm_solve
Keywords: eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a real nonsymmetric eigenproblem, reverse communication driver
Names: f12jkc; nag_sparseig_feast_real_gen_solve
Keywords: eigenvalues; eigenvectors; real, nonsymmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a real nonsymmetric eigenproblem, reverse communication driver
Names: f12jkf; nagf_sparseig_feast_real_gen_solve
Keywords: eigenvalues; eigenvectors; real, nonsymmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a complex Hermitian eigenproblem, reverse communication driver
Names: f12jrc; nag_sparseig_feast_complex_herm_solve
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex Hermitian eigenproblem, reverse communication driver
Names: f12jrf; nagf_sparseig_feast_complex_herm_solve
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex symmetric eigenproblem, reverse communication driver
Names: f12jsc; nag_sparseig_feast_complex_symm_solve
Keywords: complex, symmetric matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex symmetric eigenproblem, reverse communication driver
Names: f12jsf; nagf_sparseig_feast_complex_symm_solve
Keywords: complex, symmetric matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex non-Hermitian eigenproblem, reverse communication driver
Names: f12jtc; nag_sparseig_feast_complex_gen_solve
Keywords: complex, general matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex non-Hermitian eigenproblem, reverse communication driver
Names: f12jtf; nagf_sparseig_feast_complex_gen_solve
Keywords: complex, general matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a symmetric polynomial eigenproblem, reverse communication driver
Names: f12juc; nag_sparseig_feast_poly_symm_solve
Keywords: eigenvalues; eigenvectors; Symmetrical polynomial matrix
GAMS: D4a3, D4a7
Selected eigenvalues and eigenvectors of a symmetric polynomial eigenproblem, reverse communication driver
Names: f12juf; nagf_sparseig_feast_poly_symm_solve
Keywords: eigenvalues; eigenvectors; Symmetrical polynomial matrix
GAMS: D4a3, D4a7
Selected eigenvalues and eigenvectors of a nonsymmetric polynomial eigenproblem, reverse communication driver
Names: f12jvc; nag_sparseig_feast_poly_gen_solve
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3, D4a7
Selected eigenvalues and eigenvectors of a nonsymmetric polynomial eigenproblem, reverse communication driver
Names: f12jvf; nagf_sparseig_feast_poly_gen_solve
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3, D4a7
Destroy the data handle initialized by
f12jac and deallocate all the memory used
Names: f12jzc; nag_sparseig_feast_free
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3,
D4a7Destroy the data handle initialized by
f12jaf and deallocate all the memory used
Names: f12jzf; nagf_sparseig_feast_free
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3,
D4a7Dot product of two vectors, allows scaling and accumulation
Names: f16eac; nag_ddot
Keywords: dot product; inner product
GAMS: D1a4
Dot product of two vectors, allows scaling and accumulation
Names: f16eaf; nagf_blast_ddot; blas_ddot
Keywords: dot product; inner product
GAMS: D1a4
Real weighted vector addition
Names: f16ecc; nag_daxpby
Keywords: blas; blas_daxpby; sum, vector
GAMS: D1a11
Real weighted vector addition
Names: f16ecf; nagf_blast_daxpby; blas_daxpby
Keywords: blas; blas_daxpby; sum, vector
GAMS: D1a11
Complex weighted vector addition
Names: f16gcc; nag_zaxpby
Keywords: blas; blas_zaxpby; sum, vector
GAMS: D1a11
Complex weighted vector addition
Names: f16gcf; nagf_blast_zaxpby; blas_zaxpby
Keywords: blas; blas_zaxpby; sum, vector
GAMS: D1a11
Matrix-matrix product, two real rectangular matrices
Names: f16yac; nag_dgemm; dgemm
Keywords: blas, real matrices; dgemm; multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
Names: f16ycc; nag_dsymm; dsymm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, m×n matrix; real, symmetric matrix
GAMS: D1b6
Matrix-matrix product, one real triangular matrix, one real rectangular matrix
Names: f16yfc; nag_dtrmm; dtrmm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
Names: f16yjc; nag_dtrsm; dtrsm
Keywords: blas; dtrsm; linear equations; multiple right-hand side; real, triangular, matrix; real matrices
GAMS: D2a3
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format
Names: f16ylc; nag_dtfsm; dtfsm
Keywords: BLAS; blas, real matrices; dtfsm; linear algebra support routines;; linear equations; real, triangular matrix; Rectangular Full Packed format; RFP
GAMS: D2a3
Rank-k update of a real symmetric matrix
Names: f16ypc; nag_dsyrk; dsyrk
Keywords: blas, real matrices; dsyrk; rank-k matrix updates; real, symmetric matrix
GAMS: D1b5
Rank-k update of a real symmetric matrix, Rectangular Full Packed format
Names: f16yqc; nag_dsfrk; dsfrk
Keywords: dsfrk; rank-k matrix updates; real, symmetric matrix; Rectangular Full Packed format; RFP
GAMS: D1b5
Rank-2k update of a real symmetric matrix
Names: f16yrc; nag_dsyr2k; dsyr2k
Keywords: blas, real matrices; dsyr2k; rank-2k matrix updates; real, symmetric matrix
GAMS: D1b5
Matrix-matrix product, two complex rectangular matrices
Names: f16zac; nag_zgemm; zgemm
Keywords: blas, complex matrices; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
Names: f16zcc; nag_zhemm; zhemm
Keywords: blas, complex matrices; complex, Hermitian, matrix; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
Names: f16zfc; nag_ztrmm; ztrmm
Keywords: blas, complex matrices; complex, m×n matrix; complex, triangular matrix; multiply, matrix; ztrmm
GAMS: D1b6
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
Names: f16zjc; nag_ztrsm; ztrsm
Keywords: blas, complex matrices; complex, triangular matrix; linear equations; multiple right-hand sides; ztrsm
GAMS: D2a3
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format
Names: f16zlc; nag_ztfsm; ztfsm
Keywords: BLAS; blas, complex matrices; complex, triangular matrix; linear algebra support routines;; linear equations; Rectangular Full Packed format; RFP; ztfsm
GAMS: D2c3
Rank-k update of a complex Hermitian matrix
Names: f16zpc; nag_zherk; zherk
Keywords: blas, complex matrices; complex, Hermitian, matrix; rank-k matrix updates; zherk
GAMS: D1b5
Rank-k update of a complex Hermitian matrix, Rectangular Full Packed format
Names: f16zqc; nag_zhfrk; zhfrk
Keywords: complex, Hermitian matrix; rank-k matrix updates; Rectangular Full Packed format; RFP; zhfrk
GAMS: D1b5
Rank-2k update of a complex Hermitian matrix
Names: f16zrc; nag_zher2k; zher2k
Keywords: blas, complex matrices; complex, Hermitian, matrix; rank-2k matrix updates; zher2k
GAMS: D1b5
Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
Names: f16ztc; nag_zsymm; zsymm
Keywords: blas, complex matrices; complex, m×n matrix; complex, symmetric matrix; multiply, matrix; zsymm
GAMS: D1b6
Rank-k update of a complex symmetric matrix
Names: f16zuc; nag_zsyrk; zsyrk
Keywords: blas, complex matrices; complex, symmetric, matrix; rank-k matrix updates; zsyrk
GAMS: D1b5
Rank-2k update of a complex symmetric matrix
Names: f16zwc; nag_zsyr2k; zher2k
Keywords: blas, complex matrices; complex, symmetric, matrix; rank-2k matrix updates; zsyr2k
GAMS: D1b5
Calculates approximate quantiles from a data stream of known size
Names: g01anc; nag_approx_quantiles_fixed
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Calculates approximate quantiles from a data stream of known size
Names: g01anf; nagf_stat_quantiles_stream_fixed
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Calculates approximate quantiles from a data stream of unknown size
Names: g01apc; nag_approx_quantiles_arbitrary
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Calculates approximate quantiles from a data stream of unknown size
Names: g01apf; nagf_stat_quantiles_stream_arbitrary
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Constructs a stem and leaf plot
Names: g01arf; nagf_stat_plot_stem_leaf
Keywords: stem stem and leaf plot
GAMS: L3a3, Q
Computes univariate summary information: mean, variance, skewness, kurtosis
Names: g01atc; nag_summary_stats_onevar
Keywords: big data; data analytics; data stream; kurtosis; maximum value; mean; minimum value; skewness; standard deviation; streaming
GAMS: L1a1
Computes univariate summary information: mean, variance, skewness, kurtosis
Names: g01atf; nagf_stat_summary_onevar
Keywords: big data; data analytics; data stream; kurtosis; maximum value; mean; minimum value; skewness; standard deviation; streaming
GAMS: L1a1
Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
Names: g01dhc; nag_ranks_and_scores
Keywords: Blom scores; exponential scores; finance; rank scores; Savage scores; Tukey scores; van der Waerden scores
GAMS: L4a1a2n, N6a1b
Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
Names: g01dhf; nagf_stat_ranks_and_scores
Keywords: Blom scores; exponential scores; finance; rank scores; Savage scores; Tukey scores; van der Waerden scores
GAMS: L4a1a2n, N6a1b
Computes probability for the Studentized range statistic
Names: g01emc; nag_prob_studentized_range
Keywords: CDF, cumulative distribution function; finance; probability; Studentized range statistic
GAMS: L5a1
Computes probability for the Studentized range statistic
Names: g01emf; nagf_stat_prob_studentized_range
Keywords: CDF, cumulative distribution function; finance; probability; Studentized range statistic
GAMS: L5a1
Computes probabilities for the Dickey–Fuller unit root test
Names: g01ewc; nag_prob_dickey_fuller_unit
Keywords: Dickey–Fuller ; probabilities; statistical distribution functions; unit root
GAMS: L5a1
Computes probabilities for the Dickey–Fuller unit root test
Names: g01ewf; nagf_stat_prob_dickey_fuller_unit
Keywords: Dickey–Fuller ; probabilities; statistical distribution functions; unit root
GAMS: L5a1
Computes deviates for the Studentized range statistic
Names: g01fmc; nag_deviates_studentized_range
Keywords: deviates; finance; inverse CDF; inverse cumulative distribution function; Studentized range statistic
GAMS: L5a2
Computes deviates for the Studentized range statistic
Names: g01fmf; nagf_stat_inv_cdf_studentized_range
Keywords: deviates; finance; inverse CDF; inverse cumulative distribution function; Studentized range statistic
GAMS: L5a2
Probability for the bivariate Normal distribution
Names: g01hac; nag_bivariate_normal_dist
Keywords: bivariate Normal distribution; finance; lower tail probability; Normal distribution
GAMS: L5b1n
Computes probability for the bivariate Normal distribution
Names: g01haf; nagf_stat_prob_bivariate_normal
Keywords: bivariate Normal distribution; finance; lower tail probability; Normal distribution
GAMS: L5b1n
Computes probabilities for the multivariate Normal distribution
Names: g01hbc; nag_multi_normal
Keywords: central probability; finance; lower tail probability; multivariate Normal distribution; Normal distribution; upper tail probability
GAMS: L5b1n
Computes probabilities for the multivariate Normal distribution
Names: g01hbf; nagf_stat_prob_multi_normal
Keywords: central probability; finance; lower tail probability; multivariate Normal distribution; Normal distribution; upper tail probability
GAMS: L5b1n
Computes the probability for the multivariate Student's t-distribution
Names: g01hdc; nag_multi_students_t
Keywords: multivariate Student's t-distribution; probability; Student's t-distribution
GAMS: L5b1
Computes the probability for the multivariate Student's t-distribution
Names: g01hdf; nagf_stat_prob_multi_students_t
Keywords: multivariate Student's t-distribution; probability; Student's t-distribution
GAMS: L5b1
Computes lower tail probability for a linear combination of (central) χ2 variables
Names: g01jdc; nag_prob_lin_chi_sq
Keywords: chi-squared distribution; finance; Imhof's method; lower tail probability; Pan's method
GAMS: L5a1
Computes lower tail probability for a linear combination of (central) χ2 variables
Names: g01jdf; nagf_stat_prob_chisq_lincomb
Keywords: chi-squared distribution; finance; Imhof's method; lower tail probability; Pan's method
GAMS: L5a1
Computes a vector of values for the probability density function of the multivariate Normal distribution
Names: g01lbc; nag_multi_normal_pdf_vector
Keywords: Gaussian distribution; logarithm, pdf; multivariate Normal distribution; Normal distribution; pdf; probability density function
GAMS: L5b1n
Computes a vector of values for the probability density function of the multivariate Normal distribution
Names: g01lbf; nagf_stat_pdf_multi_normal_vector
Keywords: Gaussian distribution; logarithm, pdf; multivariate Normal distribution; Normal distribution; pdf; probability density function
GAMS: L5b1n
Cumulants and moments of quadratic forms in Normal variables
Names: g01nac; nag_moments_quad_form
Keywords: cumulant; finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Cumulants and moments of quadratic forms in Normal variables
Names: g01naf; nagf_stat_moments_quad_form
Keywords: cumulant; finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Moments of ratios of quadratic forms in Normal variables, and related statistics
Names: g01nbc; nag_moments_ratio_quad_forms
Keywords: finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Moments of ratios of quadratic forms in Normal variables, and related statistics
Names: g01nbf; nagf_stat_moments_ratio_quad_forms
Keywords: finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Computes the mean and standard deviation using a rolling window
Names: g01wac; nag_moving_average
Keywords: big data; data analytics; data stream; mean; moving average; standard deviation; streaming
GAMS: L1a1
Computes the mean and standard deviation using a rolling window
Names: g01waf; nagf_stat_moving_average
Keywords: big data; data analytics; data stream; mean; moving average; standard deviation; streaming
GAMS: L1a1
Computes the nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02aac; nag_nearest_correlation
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02aaf; nagf_correg_corrmat_nearest
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, augmenting
g02aac to incorporate weights and bounds
Names: g02abc; nag_nearest_correlation_bounded
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1bComputes the nearest correlation matrix to a real square matrix, augmenting
g02aaf to incorporate weights and bounds
Names: g02abf; nagf_correg_corrmat_nearest_bounded
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1bComputes the nearest correlation matrix with k-factor structure to a real square matrix
Names: g02aec; nag_nearest_correlation_k_factor
Keywords: correlation matrix; finance; k-factor structure; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix with k-factor structure to a real square matrix
Names: g02aef; nagf_correg_corrmat_nearest_kfactor
Keywords: correlation matrix; finance; k-factor structure; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, using element-wise weighting
Names: g02ajc; nag_nearest_correlation_h_weight
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, using element-wise weighting
Names: g02ajf; nagf_correg_corrmat_h_weight
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the rank-constrained nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02akc; nag_correg_corrmat_nearest_rank
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm; rank-constrained
GAMS: L1c1b
Computes the rank-constrained nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02akf; nagf_correg_corrmat_nearest_rank
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm; rank-constrained
GAMS: L1c1b
Computes a correlation matrix from an approximate matrix with fixed submatrix
Names: g02anc; nag_nearest_correlation_shrinking
Keywords: correlation matrix; nearest correlation matrix; shrinking method
GAMS: L1c1b
Computes a correlation matrix from an approximate matrix with fixed submatrix
Names: g02anf; nagf_correg_corrmat_shrinking
Keywords: correlation matrix; nearest correlation matrix; shrinking method
GAMS: L1c1b
Computes a correlation matrix from an approximate one using a specified target matrix
Names: g02apc; nag_nearest_correlation_target
Keywords: correlation matrix; elementwise weights; nearest correlation matrix; shrinkage; shrinking method
GAMS: L1c1b
Computes a correlation matrix from an approximate one using a specified target matrix
Names: g02apf; nagf_correg_corrmat_target
Keywords: correlation matrix; elementwise weights; nearest correlation matrix; shrinkage; shrinking method
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, with fixed elements
Names: g02asc; nag_correg_corrmat_fixed
Keywords: alternating projections; Anderson acceleration; correlation matrix; nearest correlation matrix
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, with fixed elements
Names: g02asf; nagf_correg_corrmat_fixed
Keywords: alternating projections; Anderson acceleration; correlation matrix; nearest correlation matrix
GAMS: L1c1b
Pearson product-moment correlation coefficients, all variables, no missing values
Names: g02baf; nagf_correg_coeffs_pearson
Keywords: correlation coefficients; finance; Pearson product moment correlation
GAMS: L1c1b
Pearson product-moment correlation coefficients, all variables, casewise treatment of missing values
Names: g02bbf; nagf_correg_coeffs_pearson_miss_case
Keywords: correlation coefficients; finance; missing values; Pearson product moment correlation
GAMS: L1c2
Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values
Names: g02bcf; nagf_correg_coeffs_pearson_miss_pair
Keywords: correlation coefficients; finance; missing values; Pearson product moment correlation
GAMS: L1c2
Correlation-like coefficients (about zero), all variables, no missing values
Names: g02bdf; nagf_correg_coeffs_zero
Keywords: correlation-like coefficients; cross-products; finance; mean; standard deviation; sum of squares
GAMS: L1c1
Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
Names: g02bef; nagf_correg_coeffs_zero_miss_case
Keywords: correlation-like coefficients; cross-products; finance; mean; missing values; standard deviation; sum of squares
GAMS: L1c2
Pearson product-moment correlation coefficients, subset of variables, no missing values
Names: g02bgf; nagf_correg_coeffs_pearson_subset
Keywords: cross-products; finance; mean; Pearson product moment correlation; standard deviation; sum of squares
GAMS: L1c1b
Pearson product-moment correlation coefficients, subset of variables, casewise treatment of missing values
Names: g02bhf; nagf_correg_coeffs_pearson_subset_miss_case
Keywords: cross-products; finance; mean; missing values; Pearson product moment correlation; standard deviation; sum of squares
GAMS: L1c2
Correlation-like coefficients (about zero), subset of variables, no missing values
Names: g02bkf; nagf_correg_coeffs_zero_subset
Keywords: correlation-like coefficients; cross-products; finance; mean; standard deviation; sum of squares
GAMS: L1c1
Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
Names: g02blf; nagf_correg_coeffs_zero_subset_miss_case
Keywords: correlation-like coefficients; cross-products; finance; mean; missing values; standard deviation; sum of squares
GAMS: L1c2
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
Names: g02bnf; nagf_correg_coeffs_kspearman_overwrite
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; Spearman's rank correlation coefficients
GAMS: L1c1b
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, overwriting input data
Names: g02bpf; nagf_correg_coeffs_kspearman_miss_case_overwrite
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; missing values; Spearman's rank correlation coefficients
GAMS: L1c2
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data
Names: g02bqf; nagf_correg_coeffs_kspearman
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; Spearman's rank correlation coefficients
GAMS: L1c1b
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, preserving input data
Names: g02brf; nagf_correg_coeffs_kspearman_miss_case
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; missing values; Spearman's rank correlation coefficients
GAMS: L1c2
Computes a weighted sum of squares matrix
Names: g02buc; nag_sum_sqs
Keywords: cross-products; finance; mean; sum of squares; West's WV2 algorithm
GAMS: L1c1b
Computes a weighted sum of squares matrix
Names: g02buf; nagf_correg_ssqmat
Keywords: cross-products; finance; mean; sum of squares; West's WV2 algorithm
GAMS: L1c1b
Computes (optionally weighted) correlation and covariance matrices
Names: g02bxf; nagf_correg_corrmat
Keywords: finance; mean; Pearson product moment correlation; standard deviation; variance-covariance matrix
GAMS: L1c1b
Computes partial correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by
g02bxf Names: g02byf; nagf_correg_corrmat_partial
Keywords: finance; partial correlation
GAMS: L1c1bCombines two sums of squares matrices, for use after
g02buc Names: g02bzc; nag_sum_sqs_combine
Keywords: cross-products; data stream; mean; streaming; sum of squares
GAMS: L1c1bCombines two sums of squares matrices, for use after
g02buf Names: g02bzf; nagf_correg_ssqmat_combine
Keywords: cross-products; data stream; mean; streaming; sum of squares
GAMS: L1c1bMultiple linear regression, from correlation coefficients, with constant term
Names: g02cgf; nagf_correg_linregm_coeffs_const
Keywords: finance; multiple linear regression
GAMS: L8c1b2
Multiple linear regression, from correlation-like coefficients, without constant term
Names: g02chf; nagf_correg_linregm_coeffs_noconst
Keywords: finance; multiple linear regression
GAMS: L8c1b2
Fits a general (multiple) linear regression model
Names: g02daf; nagf_correg_linregm_fit
Keywords: finance; multiple linear regression
GAMS: L7f, L8c1b1
Add/delete an observation to/from a general linear regression model
Names: g02dcf; nagf_correg_linregm_obs_edit
Keywords: finance; linear regression; regression; standard errors; variance-covariance matrix
GAMS: L8c1b1
Estimates of linear parameters and general linear regression model from updated model
Names: g02ddf; nagf_correg_linregm_update
Keywords: finance; linear regression; regression
GAMS: L8c1a1, L8c1b1
Add a new independent variable to a general linear regression model
Names: g02dec; nag_regsn_mult_linear_add_var
Keywords: finance; linear regression
GAMS: L8c1a1, L8c1b1
Add a new independent variable to a general linear regression model
Names: g02def; nagf_correg_linregm_var_add
Keywords: finance; linear regression
GAMS: L8c1a1, L8c1b1
Delete an independent variable from a general linear regression model
Names: g02dff; nagf_correg_linregm_var_del
Keywords: finance; linear regression
GAMS: L8c1a1, L8c1b1
Fits a general linear regression model to new dependent variable
Names: g02dgf; nagf_correg_linregm_fit_newvar
Keywords: finance; linear regression
GAMS: L8c2
Estimates and standard errors of parameters of a general linear regression model for given constraints
Names: g02dkf; nagf_correg_linregm_constrain
Keywords: finance; linear regression; standard errors
GAMS: L8c1b1
Computes estimable function of a general linear regression model and its standard error
Names: g02dnf; nagf_correg_linregm_estfunc
Keywords: estimable function; finance; linear regression
GAMS: L7f, L8c1b1, L8c1d
Computes residual sums of squares for all possible linear regressions for a set of independent variables
Names: g02eac; nag_all_regsn
Keywords: sum of squares
GAMS: L8c1a1
Computes residual sums of squares for all possible linear regressions for a set of independent variables
Names: g02eaf; nagf_correg_linregm_rssq
Keywords: sum of squares
GAMS: L8c1a1
Fits a linear regression model by forward selection
Names: g02eec; nag_step_regsn
Keywords: linear regression
GAMS: L8c1a1
Fits a linear regression model by forward selection
Names: g02eef; nagf_correg_linregm_fit_onestep
Keywords: linear regression
GAMS: L8c1a1
Computes Durbin–Watson test statistic
Names: g02fcc; nag_durbin_watson_stat
Keywords: Durbin–Watson statistic; finance; significance
GAMS: L8c1d
Computes Durbin–Watson test statistic
Names: g02fcf; nagf_correg_linregm_stat_durbwat
Keywords: Durbin–Watson statistic; finance; significance
GAMS: L8c1d
Fits a generalized linear model with Normal errors
Names: g02gaf; nagf_correg_glm_normal
Keywords: finance; generalized linear model
GAMS: L8e1b
Fits a generalized linear model with binomial errors
Names: g02gbf; nagf_correg_glm_binomial
Keywords: finance; generalized linear model; logistic regression; logit; probit
GAMS: L8e
Fits a generalized linear model with Poisson errors
Names: g02gcf; nagf_correg_glm_poisson
Keywords: finance; generalized linear model
GAMS: L8e, L9c
Fits a generalized linear model with gamma errors
Names: g02gdf; nagf_correg_glm_gamma
Keywords: finance; generalized linear model
GAMS: L8e
Estimates and standard errors of parameters of a general linear model for given constraints
Names: g02gkf; nagf_correg_glm_constrain
Keywords: finance; generalized linear model; standard errors
GAMS: L8e, L9c
Computes estimable function of a generalized linear model and its standard error
Names: g02gnf; nagf_correg_glm_estfunc
Keywords: estimable function; finance; generalized linear model
GAMS: L8e, L9c
Computes a predicted value and its associated standard error based on a previously fitted generalized linear model
Names: g02gpc; nag_glm_predict
Keywords: finance; generalized linear model; predicted value; standard errors
GAMS: L8c
Computes a predicted value and its associated standard error based on a previously fitted generalized linear model
Names: g02gpf; nagf_correg_glm_predict
Keywords: finance; generalized linear model; predicted value; standard errors
GAMS: L8c
Robust regression, standard M-estimates
Names: g02haf; nagf_correg_robustm
Keywords: Andrew's sine wave; finance; Hampel's piecewise linear function; Huber type regression; Krasker–Welsch weights; Mallows type regression; Maronna's weights; M-estimates; regression; robust regression; Scheppe type regression; Tukey's bi-weight
GAMS: L8c4
Robust regression, compute weights for use with
g02hdc Names: g02hbc; nag_robust_m_regsn_wts
Keywords: bounded influence; finance; robust regression
GAMS: L8c4Robust regression, compute weights for use with
g02hdf Names: g02hbf; nagf_correg_robustm_wts
Keywords: bounded influence; finance; robust regression
GAMS: L8c4Robust regression, compute regression with user-supplied functions and weights
Names: g02hdc; nag_robust_m_regsn_user_fn
Keywords: bounded influence; finance; iterative weighted least squares; M-estimates; robust regression
GAMS: L8c4
Robust regression, compute regression with user-supplied functions and weights
Names: g02hdf; nagf_correg_robustm_user
Keywords: bounded influence; finance; iterative weighted least squares; M-estimates; robust regression
GAMS: L8c4
Robust regression, variance-covariance matrix following
g02hdc Names: g02hfc; nag_robust_m_regsn_param_var
Keywords: finance; robust regression; variance-covariance matrix
GAMS: L8c4Robust regression, variance-covariance matrix following
g02hdf Names: g02hff; nagf_correg_robustm_user_varmat
Keywords: finance; robust regression; variance-covariance matrix
GAMS: L8c4Robust estimation of a covariance matrix, Huber's weight function
Names: g02hkc; nag_robust_corr_estim
Keywords: correlation matrix; finance; Huber's weight function
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, Huber's weight function
Names: g02hkf; nagf_correg_robustm_corr_huber
Keywords: correlation matrix; finance; Huber's weight function
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function plus derivatives
Names: g02hlc; nag_robust_m_corr_user_fn
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function plus derivatives
Names: g02hlf; nagf_correg_robustm_corr_user_deriv
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function
Names: g02hmc; nag_robust_m_corr_user_fn_no_derr
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function
Names: g02hmf; nagf_correg_robustm_corr_user
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Linear mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jac; nag_reml_mixed_regsn
Keywords: finance; maximum likelihood; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Linear mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jaf; nagf_correg_mixeff_reml
Keywords: finance; maximum likelihood; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Linear mixed effects regression using Maximum Likelihood (ML)
Names: g02jbc; nag_ml_mixed_regsn
Keywords: finance; maximum likelihood; mixed effects regression
GAMS: L8c
Linear mixed effects regression using Maximum Likelihood (ML)
Names: g02jbf; nagf_correg_mixeff_ml
Keywords: finance; maximum likelihood; mixed effects regression
GAMS: L8c
Hierarchical mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jdc; nag_reml_hier_mixed_regsn
Keywords: hierarchical mixed effects regression; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Hierarchical mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jdf; nagf_correg_mixeff_hier_reml
Keywords: hierarchical mixed effects regression; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Hierarchical mixed effects regression using Maximum Likelihood (ML)
Names: g02jec; nag_ml_hier_mixed_regsn
Keywords: hierarchical mixed effects regression; maximum likelihood; mixed effects regression
GAMS: L8c
Hierarchical mixed effects regression using Maximum Likelihood (ML)
Names: g02jef; nagf_correg_mixeff_hier_ml
Keywords: hierarchical mixed effects regression; maximum likelihood; mixed effects regression
GAMS: L8c
Linear mixed effects regression, initialization routine for
g02jhc Names: g02jfc; nag_correg_lmm_init
Keywords: mixed effects regression
GAMS: L8cLinear mixed effects regression, initialization routine for
g02jhf Names: g02jff; nagf_correg_lmm_init
Keywords: mixed effects regression
GAMS: L8cLinear mixed effects regression using either Restricted Maximum Likelihood (REML) or Maximum Likelihood (ML)
Names: g02jhc; nag_correg_lmm_fit
Keywords: linear mixed effects regression; mixed effects regression; ML, Maximum Likelihood; REML, Restricted Maximum Likelihood
GAMS: L8c
Linear mixed effects regression using either Restricted Maximum Likelihood (REML) or Maximum Likelihood (ML)
Names: g02jhf; nagf_correg_lmm_fit
Keywords: linear mixed effects regression; mixed effects regression; ML, Maximum Likelihood; REML, Restricted Maximum Likelihood
GAMS: L8c
Ridge regression, optimizing a ridge regression parameter
Names: g02kac; nag_regsn_ridge_opt
Keywords: finance; ridge regression
GAMS: L8e2
Ridge regression, optimizing a ridge regression parameter
Names: g02kaf; nagf_correg_ridge_opt
Keywords: finance; ridge regression
GAMS: L8e2
Ridge regression using a number of supplied ridge regression parameters
Names: g02kbc; nag_regsn_ridge
Keywords: finance; ridge regression
GAMS: L8e2
Ridge regression using a number of supplied ridge regression parameters
Names: g02kbf; nagf_correg_ridge
Keywords: finance; ridge regression
GAMS: L8e2
Partial least squares (PLS) regression using singular value decomposition
Names: g02lac; nag_pls_orth_scores_svd
Keywords: finance; partial least squares regression
GAMS: L8c1c
Partial least squares (PLS) regression using singular value decomposition
Names: g02laf; nagf_correg_pls_svd
Keywords: finance; partial least squares regression
GAMS: L8c1c
Partial least squares (PLS) regression using Wold's iterative method
Names: g02lbc; nag_pls_orth_scores_wold
Keywords: finance; partial least squares regression; Wold's iterative method
GAMS: L8c1c
Partial least squares (PLS) regression using Wold's iterative method
Names: g02lbf; nagf_correg_pls_wold
Keywords: finance; partial least squares regression; Wold's iterative method
GAMS: L8c1c
PLS parameter estimates following partial least squares regression by
g02lac or
g02lbc Names: g02lcc; nag_pls_orth_scores_fit
Keywords: finance; partial least squares regression
GAMS: L8c1cPLS parameter estimates following partial least squares regression by
g02laf or
g02lbf Names: g02lcf; nagf_correg_pls_fit
Keywords: finance; partial least squares regression
GAMS: L8c1cPLS predictions based on parameter estimates from
g02lcc Names: g02ldc; nag_pls_orth_scores_pred
Keywords: finance; partial least squares regression
GAMS: L8c1cPLS predictions based on parameter estimates from
g02lcf Names: g02ldf; nagf_correg_pls_pred
Keywords: finance; partial least squares regression
GAMS: L8c1cLeast angle regression (LARS), least absolute shrinkage and selection operator (LASSO) and forward stagewise regression
Names: g02mac; nag_lars
Keywords: forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Least angle regression (LARS), least absolute shrinkage and selection operator (LASSO) and forward stagewise regression
Names: g02maf; nagf_correg_lars
Keywords: forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) and forward stagewise regression using the cross-products matrix
Names: g02mbc; nag_lars_xtx
Keywords: cross-product; forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) and forward stagewise regression using the cross-products matrix
Names: g02mbf; nagf_correg_lars_xtx
Keywords: cross-product; forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Calculates additional parameter estimates following Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) or forward stagewise regression
Names: g02mcc; nag_lars_param
Keywords: forward stagewise; LARS; LASSO; least angle regression
GAMS: L8c3
Calculates additional parameter estimates following Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) or forward stagewise regression
Names: g02mcf; nagf_correg_lars_param
Keywords: forward stagewise; LARS; LASSO; least angle regression
GAMS: L8c3
Linear quantile regression, simple interface, independent, identically distributed (IID) errors
Names: g02qfc; nag_regsn_quant_linear_iid
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Linear quantile regression, simple interface, independent, identically distributed (IID) errors
Names: g02qff; nagf_correg_quantile_linreg_easy
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Linear quantile regression, comprehensive interface
Names: g02qgc; nag_regsn_quant_linear
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Linear quantile regression, comprehensive interface
Names: g02qgf; nagf_correg_quantile_linreg
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Performs principal component analysis
Names: g03aaf; nagf_mv_prin_comp
Keywords: big data; data analytics; finance; principal component analysis
GAMS: L13b
Performs canonical variate analysis
Names: g03acf; nagf_mv_canon_var
Keywords: canonical discrimination analysis; canonical variate analysis
GAMS: L12, L13c
Performs canonical correlation analysis
Names: g03adf; nagf_mv_canon_corr
Keywords: canonical correlation analysis
GAMS: L13c
Computes orthogonal rotations for loading matrix, generalized orthomax criterion
Names: g03baf; nagf_mv_rot_orthomax
Keywords: canonical variate analysis; factor analysis; orthogonal transformations; orthomax criterion
GAMS: L13a
Procrustes rotations
Names: g03bcc; nag_mv_procustes
Keywords: Procrustes rotations
GAMS: L13a
Computes Procrustes rotations
Names: g03bcf; nagf_mv_rot_procrustes
Keywords: Procrustes rotations
GAMS: L13a
ProMax rotations
Names: g03bdc; nag_mv_promax
Keywords: ProMax rotations
GAMS: L8c1c
ProMax rotations
Names: g03bdf; nagf_mv_rot_promax
Keywords: ProMax rotations
GAMS: L8c1c
Computes maximum likelihood estimates of the parameters of a factor analysis model, factor loadings, communalities and residual correlations
Names: g03caf; nagf_mv_factor
Keywords: communalities, maximum likelihood; factor analysis; factor loadings; maximum likelihood; residual correlations
GAMS: L13a
Computes factor score coefficients (for use after
g03caf)
Names: g03ccf; nagf_mv_factor_score
Keywords: factor analysis; factor score coefficients; maximum likelihood
GAMS: L13aComputes test statistic for equality of within-group covariance matrices and matrices for discriminant analysis
Names: g03daf; nagf_mv_discrim
Keywords: discriminant analysis; test statistic
GAMS: L12
Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after
g03daf)
Names: g03dbf; nagf_mv_discrim_mahal
Keywords: discriminant analysis; Mahalanobis distances
GAMS: L12Allocates observations to groups according to selected rules (for use after
g03daf)
Names: g03dcf; nagf_mv_discrim_group
Keywords: discriminant analysis
GAMS: L12Compute distance (dissimilarity) matrix
Names: g03eac; nag_mv_distance_mat
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Computes distance matrix
Names: g03eaf; nagf_mv_distance_mat
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Compute distance (dissimilarity) matrix for two input matrices
Names: g03ebc; nag_mv_distance_mat_2
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Compute distance (dissimilarity) matrix for two input matrices
Names: g03ebf; nagf_mv_distance_mat_2
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Hierarchical cluster analysis
Names: g03ecf; nagf_mv_cluster_hier
Keywords: big data; cluster analysis; data analytics; hierarchical cluster analysis
GAMS: L14a1a1
Performs principal coordinate analysis, classical metric scaling
Names: g03faf; nagf_mv_multidimscal_metric
Keywords: classical metric scaling; principal coordinate analysis
GAMS: L16
Performs non-metric (ordinal) multidimensional scaling
Names: g03fcf; nagf_mv_multidimscal_ordinal
Keywords: non-metric (ordinal) scaling; ordinal scaling
GAMS: L16
Fits a Gaussian mixture model
Names: g03gac; nag_mv_gaussian_mixture
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Fits a Gaussian mixture model
Names: g03gaf; nagf_mv_gaussian_mixture
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Fits a Gaussian mixture model with results stored in submatrices
Names: g03gbc; nag_mv_gaussian_mixture_ld
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Fits a Gaussian mixture model with results stored in submatrices
Names: g03gbf; nagf_mv_gaussian_mixture_ld
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Analysis of variance, randomized block or completely randomized design, treatment means and standard errors
Names: g04bbf; nagf_anova_random
Keywords: ANOVA; completely randomized design; randomized block design; standard errors; treatment means
GAMS: L7a1, L7b
Analysis of variance, general row and column design, treatment means and standard errors
Names: g04bcf; nagf_anova_rowcol
Keywords: ANOVA; standard errors; treatment means
GAMS: L7c
Analysis of variance, complete factorial design, treatment means and standard errors
Names: g04caf; nagf_anova_factorial
Keywords: ANOVA; factorial design; standard errors; treatment means
GAMS: L7d1
Computes confidence intervals for differences between means computed by
g04bbf or
g04bcf Names: g04dbf; nagf_anova_confidence
Keywords: confidence interval; design of experiments; experimental design
GAMS: L7a1Computes orthogonal polynomials or dummy variables for factor/classification variable
Names: g04eaf; nagf_anova_dummyvars
Keywords: classification variable; design of experiments; experimental design; factor variable
GAMS: L7g, L8i
Intraclass correlation (ICC) for assessing rater reliability
Names: g04gac; nag_anova_icc
Keywords: ICC; interrater; intraclass; intrarater; reliability
GAMS: L7
Intraclass correlation (ICC) for assessing rater reliability
Names: g04gaf; nagf_anova_icc
Keywords: ICC; interrater; intraclass; intrarater; reliability
GAMS: L7
Pseudorandom permutation of an integer vector
Names: g05ncc; nag_rand_permute
Keywords: finance; permutation; random permutation
GAMS: L6a16
Pseudorandom permutation of an integer vector
Names: g05ncf; nagf_rand_permute
Keywords: finance; permutation; random permutation
GAMS: L6a16
Pseudorandom sample from an integer vector
Names: g05ndc; nag_rand_sample
Keywords: finance; random sample; sample, random
GAMS: L6a19
Pseudorandom sample from an integer vector
Names: g05ndf; nagf_rand_sample
Keywords: finance; random sample; sample, random
GAMS: L6a19
Pseudorandom sample, without replacement, unequal weights
Names: g05nec; nag_rand_sample_unequal
Keywords: finance; random sample, without replacement; sample, random, without replacement
GAMS: L6a19
Pseudorandom sample, without replacement, unequal weights
Names: g05nef; nagf_rand_sample_wgt
Keywords: finance; random sample, without replacement; sample, random, without replacement
GAMS: L6a19
Pseudorandom resampling, unequal weights
Names: g05nfc; nag_rand_resample
Keywords: finance; random resample; random sample, with replacement; resample, random; sample, random, with replacement
GAMS: L6a19
Pseudorandom resampling, unequal weights
Names: g05nff; nagf_rand_resample
Keywords: finance; random resample; random sample, with replacement; resample, random; sample, random, with replacement
GAMS: L6a19
Generates a realization of a time series from a GARCH process with asymmetry of the form (εt-1+γ)2
Names: g05pdc; nag_rand_agarchi
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from a GARCH process with asymmetry of the form (εt-1+γ)2
Names: g05pdf; nagf_rand_times_garch_asym1
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from a GARCH process with asymmetry of the form ( |εt-1| +γεt-1)2
Names: g05pec; nag_rand_agarchii
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from a GARCH process with asymmetry of the form ( |εt-1| +γεt-1)2
Names: g05pef; nagf_rand_times_garch_asym2
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process
Names: g05pfc; nag_rand_garchgjr
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process
Names: g05pff; nagf_rand_times_garch_gjr
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from an exponential GARCH (EGARCH) process
Names: g05pgc; nag_rand_egarch
Keywords: EGARCH; finance; time series
GAMS: L6a20
Generates a realization of a time series from an exponential GARCH (EGARCH) process
Names: g05pgf; nagf_rand_times_garch_exp
Keywords: EGARCH; finance; time series
GAMS: L6a20
Generates a realization of a time series from an ARMA model
Names: g05phc; nag_rand_arma
Keywords: ARMA; finance; time series
GAMS: L6a20
Generates a realization of a time series from an ARMA model
Names: g05phf; nagf_rand_times_arma
Keywords: ARMA; finance; time series
GAMS: L6a20
Generates a realization of a multivariate time series from a VARMA model
Names: g05pjc; nag_rand_varma
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L6b
Generates a realization of a multivariate time series from a VARMA model
Names: g05pjf; nagf_rand_times_mv_varma
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L6b
Generates a realization of a time series from an exponential smoothing model
Names: g05pmc; nag_rand_exp_smooth
Keywords: exponential smoothing; finance; time series
GAMS: L6a20
Generates a realization of a time series from an exponential smoothing model
Names: g05pmf; nagf_rand_times_smooth_exp
Keywords: exponential smoothing; finance; time series
GAMS: L6a20
Permutes a matrix, vector, vector triplet into a form suitable for K-fold cross validation
Names: g05pvc; nag_rand_kfold_xyw
Keywords: cross-validation; CV; jacknife; k-fold; leave-one-out; LOO; permute
GAMS: N8
Permutes a matrix, vector, vector triplet into a form suitable for K-fold cross validation
Names: g05pvf; nagf_rand_kfold_xyw
Keywords: cross-validation; CV; jacknife; k-fold; leave-one-out; LOO; permute
GAMS: N8
Permutes a matrix, vector, vector triplet into a form suitable for random sub-sampling validation
Names: g05pwc; nag_rand_subsamp_xyw
Keywords: cross-validation; permute; resample; sub-sample
GAMS: N8
Permutes a matrix, vector, vector triplet into a form suitable for random sub-sampling validation
Names: g05pwf; nagf_rand_subsamp_xyw
Keywords: cross-validation; permute; resample; sub-sample
GAMS: N8
Generates a random orthogonal matrix
Names: g05pxc; nag_rand_orthog_matrix
Keywords: finance; random orthogonal matrix
GAMS: L6b15
Generates a random orthogonal matrix
Names: g05pxf; nagf_rand_matrix_orthog
Keywords: finance; random orthogonal matrix
GAMS: L6b15
Generates a random correlation matrix
Names: g05pyc; nag_rand_corr_matrix
Keywords: finance; random correlation matrix
GAMS: L6b3
Generates a random correlation matrix
Names: g05pyf; nagf_rand_matrix_corr
Keywords: finance; random correlation matrix
GAMS: L6b3
Generates a random two-way table
Names: g05pzc; nag_rand_2_way_table
Keywords: finance; random two-way table; two-way contingency table
GAMS: L6b
Generates a random two-way table
Names: g05pzf; nagf_rand_matrix_2waytable
Keywords: finance; random two-way table; two-way contingency table
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Student's t-copula
Names: g05rcc; nag_rand_copula_students_t
Keywords: copula; finance; random numbers; student's t-copula
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Student's t-copula
Names: g05rcf; nagf_rand_copula_students_t
Keywords: copula; finance; random numbers; student's t-copula
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gaussian copula
Names: g05rdc; nag_rand_copula_normal
Keywords: copula; finance; Gaussian copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gaussian copula
Names: g05rdf; nagf_rand_copula_normal
Keywords: copula; finance; Gaussian copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Clayton/Cook–Johnson copula
Names: g05rec; nag_rand_bivariate_copula_clayton
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Clayton/Cook–Johnson copula
Names: g05ref; nagf_rand_copula_clayton_bivar
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Frank copula
Names: g05rfc; nag_rand_bivariate_copula_frank
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Frank copula
Names: g05rff; nagf_rand_copula_frank_bivar
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Plackett copula
Names: g05rgc; nag_rand_bivariate_copula_plackett
Keywords: copula; Plackett copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Plackett copula
Names: g05rgf; nagf_rand_copula_plackett_bivar
Keywords: copula; Plackett copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Clayton/Cook–Johnson copula
Names: g05rhc; nag_rand_copula_clayton
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Clayton/Cook–Johnson copula
Names: g05rhf; nagf_rand_copula_clayton
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Frank copula
Names: g05rjc; nag_rand_copula_frank
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Frank copula
Names: g05rjf; nagf_rand_copula_frank
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gumbel–Hougaard copula
Names: g05rkc; nag_rand_copula_gumbel
Keywords: copula; Gumbel–Hougard copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gumbel–Hougaard copula
Names: g05rkf; nagf_rand_copula_gumbel
Keywords: copula; Gumbel–Hougard copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Student's t-distribution
Names: g05ryc; nag_rand_matrix_multi_students_t
Keywords: finance; multivariate Student's t-distribution; random numbers; Student's t-distribution
GAMS: L6b14
Generates a matrix of pseudorandom numbers from a multivariate Student's t-distribution
Names: g05ryf; nagf_rand_multivar_students_t
Keywords: finance; multivariate Student's t-distribution; random numbers; Student's t-distribution
GAMS: L6b14
Generates a matrix of pseudorandom numbers from a multivariate Normal distribution
Names: g05rzc; nag_rand_matrix_multi_normal
Keywords: finance; Gaussian distribution; multivariate Normal distribution; Normal distribution; random numbers
GAMS: L6b14
Generates a matrix of pseudorandom numbers from a multivariate Normal distribution
Names: g05rzf; nagf_rand_multivar_normal
Keywords: finance; Gaussian distribution; multivariate Normal distribution; Normal distribution; random numbers
GAMS: L6b14
Generates a vector of pseudorandom numbers from a uniform distribution over (0,1]
Names: g05sac; nag_rand_basic
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a uniform distribution over (0,1]
Names: g05saf; nagf_rand_dist_uniform01
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a beta distribution
Names: g05sbc; nag_rand_beta
Keywords: beta distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from a beta distribution
Names: g05sbf; nagf_rand_dist_beta
Keywords: beta distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from a Cauchy distribution
Names: g05scc; nag_rand_cauchy
Keywords: Cauchy distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a Cauchy distribution
Names: g05scf; nagf_rand_dist_cauchy
Keywords: Cauchy distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a χ2 distribution
Names: g05sdc; nag_rand_chi_sq
Keywords: chi-squared distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a χ2 distribution
Names: g05sdf; nagf_rand_dist_chisq
Keywords: chi-squared distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a Dirichlet distribution
Names: g05sec; nag_rand_dirichlet
Keywords: Dirichlet distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from a Dirichlet distribution
Names: g05sef; nagf_rand_dist_dirichlet
Keywords: Dirichlet distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from an exponential distribution
Names: g05sfc; nag_rand_exp
Keywords: exponential distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an exponential distribution
Names: g05sff; nagf_rand_dist_exp
Keywords: exponential distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an exponential mix distribution
Names: g05sgc; nag_rand_exp_mix
Keywords: exponential distribution; exponential mix distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an exponential mix distribution
Names: g05sgf; nagf_rand_dist_expmix
Keywords: exponential distribution; exponential mix distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an F-distribution
Names: g05shc; nag_rand_f
Keywords: F-distribution; finance; random numbers
GAMS: L6a6
Generates a vector of pseudorandom numbers from an F-distribution
Names: g05shf; nagf_rand_dist_f
Keywords: F-distribution; finance; random numbers
GAMS: L6a6
Generates a vector of pseudorandom numbers from a gamma distribution
Names: g05sjc; nag_rand_gamma
Keywords: finance; gamma distribution; random numbers
GAMS: L6a7
Generates a vector of pseudorandom numbers from a gamma distribution
Names: g05sjf; nagf_rand_dist_gamma
Keywords: finance; gamma distribution; random numbers
GAMS: L6a7
Generates a vector of pseudorandom numbers from a Normal distribution
Names: g05skc; nag_rand_normal
Keywords: finance; Gaussian distribution; Normal distribution; random numbers
GAMS: L6a14
Generates a vector of pseudorandom numbers from a Normal distribution
Names: g05skf; nagf_rand_dist_normal
Keywords: finance; Gaussian distribution; Normal distribution; random numbers
GAMS: L6a14
Generates a vector of pseudorandom numbers from a logistic distribution
Names: g05slc; nag_rand_logistic
Keywords: finance; logistic distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a logistic distribution
Names: g05slf; nagf_rand_dist_logistic
Keywords: finance; logistic distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a log-normal distribution
Names: g05smc; nag_rand_lognormal
Keywords: finance; log-normal distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a log-normal distribution
Names: g05smf; nagf_rand_dist_lognormal
Keywords: finance; log-normal distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a Student's t-distribution
Names: g05snc; nag_rand_students_t
Keywords: finance; random numbers; Student's t-distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a Student's t-distribution
Names: g05snf; nagf_rand_dist_students_t
Keywords: finance; random numbers; Student's t-distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a triangular distribution
Names: g05spc; nag_rand_triangular
Keywords: finance; random numbers; triangular distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a triangular distribution
Names: g05spf; nagf_rand_dist_triangular
Keywords: finance; random numbers; triangular distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a uniform distribution over [a,b]
Names: g05sqc; nag_rand_uniform
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a uniform distribution over [a,b]
Names: g05sqf; nagf_rand_dist_uniform
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a von Mises distribution
Names: g05src; nag_rand_von_mises
Keywords: finance; random numbers; von Mises distribution
GAMS: L6a22
Generates a vector of pseudorandom numbers from a von Mises distribution
Names: g05srf; nagf_rand_dist_vonmises
Keywords: finance; random numbers; von Mises distribution
GAMS: L6a22
Generates a vector of pseudorandom numbers from a Weibull distribution
Names: g05ssc; nag_rand_weibull
Keywords: finance; random numbers; Weibull distribution
GAMS: L6a23
Generates a vector of pseudorandom numbers from a Weibull distribution
Names: g05ssf; nagf_rand_dist_weibull
Keywords: finance; random numbers; Weibull distribution
GAMS: L6a23
Generates a vector of pseudorandom integers from a binomial distribution
Names: g05tac; nag_rand_binomial
Keywords: binomial distribution; finance; random integers
GAMS: L6a2
Generates a vector of pseudorandom integers from a binomial distribution
Names: g05taf; nagf_rand_int_binomial
Keywords: binomial distribution; finance; random integers
GAMS: L6a2
Generates a vector of pseudorandom logical values
Names: g05tbc; nag_rand_logical
Keywords: finance; probability; random logicals
GAMS: L6a2
Generates a vector of pseudorandom logical values
Names: g05tbf; nagf_rand_logical
Keywords: finance; probability; random logicals
GAMS: L6a2
Generates a vector of pseudorandom integers from a geometric distribution
Names: g05tcc; nag_rand_geom
Keywords: finance; geometric distribution; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a geometric distribution
Names: g05tcf; nagf_rand_int_geom
Keywords: finance; geometric distribution; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a general discrete distribution
Names: g05tdc; nag_rand_gen_discrete
Keywords: CDF, cumulative distribution function; distribution function; finance; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a general discrete distribution
Names: g05tdf; nagf_rand_int_general
Keywords: CDF, cumulative distribution function; distribution function; finance; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a hypergeometric distribution
Names: g05tec; nag_rand_hypergeometric
Keywords: finance; hypergeometric distribution; random integers
GAMS: L6a8
Generates a vector of pseudorandom integers from a hypergeometric distribution
Names: g05tef; nagf_rand_int_hypergeom
Keywords: finance; hypergeometric distribution; random integers
GAMS: L6a8
Generates a vector of pseudorandom integers from a logarithmic distribution
Names: g05tfc; nag_rand_logarithmic
Keywords: finance; logarithmic distribution; random integers
GAMS: L6a
Generates a vector of pseudorandom integers from a logarithmic distribution
Names: g05tff; nagf_rand_int_log
Keywords: finance; logarithmic distribution; random integers
GAMS: L6a
Generates a vector of pseudorandom integers from a multinomial distribution
Names: g05tgc; nag_rand_gen_multinomial
Keywords: finance; multinomial distribution; random integers
GAMS: L6b13
Generates a vector of pseudorandom integers from a multinomial distribution
Names: g05tgf; nagf_rand_int_multinomial
Keywords: finance; multinomial distribution; random integers
GAMS: L6b13
Generates a vector of pseudorandom integers from a negative binomial distribution
Names: g05thc; nag_rand_neg_bin
Keywords: finance; negative binomial distribution; Pascal distribution; Polya distribution; random integers
GAMS: L6a14
Generates a vector of pseudorandom integers from a negative binomial distribution
Names: g05thf; nagf_rand_int_negbin
Keywords: finance; negative binomial distribution; Pascal distribution; Polya distribution; random integers
GAMS: L6a14
Generates a vector of pseudorandom integers from a Poisson distribution
Names: g05tjc; nag_rand_poisson
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a Poisson distribution
Names: g05tjf; nagf_rand_int_poisson
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a Poisson distribution with varying mean
Names: g05tkc; nag_rand_compd_poisson
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a Poisson distribution with varying mean
Names: g05tkf; nagf_rand_int_poisson_varmean
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a uniform distribution
Names: g05tlc; nag_rand_discrete_uniform
Keywords: finance; random integers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom integers from a uniform distribution
Names: g05tlf; nagf_rand_int_uniform
Keywords: finance; random integers; rectangular distribution; uniform distribution
GAMS: L6a21
Generate paths for a free or non-free Wiener process using the Brownian bridge algorithm
Names: g05xbc; nag_rand_bb
Keywords: brownian bridge; Wiener process
GAMS: M1
Generate paths for a free or non-free Wiener process using the Brownian bridge algorithm
Names: g05xbf; nagf_rand_bb
Keywords: brownian bridge; Wiener process
GAMS: M1
Backs out the increments from sample paths generated by a Brownian bridge algorithm
Names: g05xdc; nag_rand_bb_inc
Keywords: brownian bridge
GAMS: M1
Backs out the increments from sample paths generated by a Brownian bridge algorithm
Names: g05xdf; nagf_rand_bb_inc
Keywords: brownian bridge
GAMS: M1
Creates a Brownian bridge construction order out of a set of input times
Names: g05xec; nag_rand_bb_make_bridge_order
Keywords: brownian bridge
GAMS: L6, M1
Creates a Brownian bridge construction order out of a set of input times
Names: g05xef; nagf_rand_bb_make_bridge_order
Keywords: brownian bridge
GAMS: L6, M1
Generates a Normal quasi-random number sequence
Names: g05yjc; nag_quasi_rand_normal
Keywords: Faure, quasi-random numbers; Gaussian distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; Normal distribution; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Generates a Normal quasi-random number sequence
Names: g05yjf; nagf_rand_quasi_normal
Keywords: Faure, quasi-random numbers; Gaussian distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; Normal distribution; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Generates a log-normal quasi-random number sequence
Names: g05ykc; nag_quasi_rand_lognormal
Keywords: Faure, quasi-random numbers; log-normal distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Generates a log-normal quasi-random number sequence
Names: g05ykf; nagf_rand_quasi_lognormal
Keywords: Faure, quasi-random numbers; log-normal distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Initializes a quasi-random number generator
Names: g05ylc; nag_quasi_init
Keywords: Faure, quasi-random numbers; finance; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; rectangular distribution; Sobol, quasi-random numbers; uniform distribution
GAMS: L6c
Initializes a quasi-random number generator
Names: g05ylf; nagf_rand_quasi_init
Keywords: Faure, quasi-random numbers; finance; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; rectangular distribution; Sobol, quasi-random numbers; uniform distribution
GAMS: L6c
Generates a uniform quasi-random number sequence
Names: g05ymc; nag_quasi_rand_uniform
Keywords: finance; low-discrepancy sequences; options, computational; quasi-random numbers; random numbers
GAMS: L6b21
Generates a uniform quasi-random number sequence
Names: g05ymf; nagf_rand_quasi_uniform
Keywords: finance; low-discrepancy sequences; options, computational; quasi-random numbers; random numbers
GAMS: L6b21
Initializes a scrambled quasi-random number generator
Names: g05ync; nag_quasi_init_scrambled
Keywords: Faure–Tezuka; finance; Niederreiter; Owen; random numbers; scramble; Sobol
GAMS: L6c
Initializes a scrambled quasi-random number generator
Names: g05ynf; nagf_rand_quasi_init_scrambled
Keywords: Faure–Tezuka; finance; Niederreiter; Owen; random numbers; scramble; Sobol
GAMS: L6c
Generates a uniform quasi-random number sequence, for a subset of dimensions
Names: g05ypc; nag_rand_quasi_uniform_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a uniform quasi-random number sequence, for a subset of dimensions
Names: g05ypf; nagf_rand_quasi_uniform_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a Normal quasi-random number sequence, for a subset of dimensions
Names: g05yqc; nag_rand_quasi_normal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a Normal quasi-random number sequence, for a subset of dimensions
Names: g05yqf; nagf_rand_quasi_normal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a log-normal quasi-random number sequence, for a subset of dimensions
Names: g05yrc; nag_rand_quasi_lognormal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a log-normal quasi-random number sequence, for a subset of dimensions
Names: g05yrf; nagf_rand_quasi_lognormal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Setup for simulating one-dimensional random fields, user-defined variogram
Names: g05zmc; nag_rand_field_1d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: M1a, L6
Setup for simulating one-dimensional random fields, user-defined variogram
Names: g05zmf; nagf_rand_field_1d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: M1a, L6
Setup for simulating one-dimensional random fields
Names: g05znc; nag_rand_field_1d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Setup for simulating one-dimensional random fields
Names: g05znf; nagf_rand_field_1d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Generates realizations of a one-dimensional random field
Names: g05zpc; nag_rand_field_1d_generate
Keywords: random fields
GAMS: L6c
Generates realizations of a one-dimensional random field
Names: g05zpf; nagf_rand_field_1d_generate
Keywords: random fields
GAMS: L6c
Setup for simulating two-dimensional random fields, user-defined variogram
Names: g05zqc; nag_rand_field_2d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: L6a
Setup for simulating two-dimensional random fields, user-defined variogram
Names: g05zqf; nagf_rand_field_2d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: L6a
Setup for simulating two-dimensional random fields, preset variogram
Names: g05zrc; nag_rand_field_2d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Setup for simulating two-dimensional random fields, preset variogram
Names: g05zrf; nagf_rand_field_2d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Generates realizations of a two-dimensional random field
Names: g05zsc; nag_rand_field_2d_generate
Keywords: random fields
GAMS: L6c
Generates realizations of a two-dimensional random field
Names: g05zsf; nagf_rand_field_2d_generate
Keywords: random fields
GAMS: L6c
Generates realizations of fractional Brownian motion
Names: g05ztc; nag_rand_field_fracbm_generate
Keywords: Brownian motion; fractional Brownian motion
GAMS: L6a
Generates realizations of fractional Brownian motion
Names: g05ztf; nagf_rand_field_fracbm_generate
Keywords: Brownian motion; fractional Brownian motion
GAMS: L6a
Computes maximum likelihood estimates for parameters of the Weibull distribution
Names: g07bec; nag_estim_weibull
Keywords: maximum likelihood; Weibull distribution
GAMS: L4a1a4w, L4a3
Computes maximum likelihood estimates for parameters of the Weibull distribution
Names: g07bef; nagf_univar_estim_weibull
Keywords: maximum likelihood; Weibull distribution
GAMS: L4a1a4w, L4a3
Estimates parameter values of the generalized Pareto distribution
Names: g07bfc; nag_estim_gen_pareto
Keywords: maximum likelihood; moments; Pareto distribution
GAMS: L4a1a4e
Estimates parameter values of the generalized Pareto distribution
Names: g07bff; nagf_univar_estim_genpareto
Keywords: maximum likelihood; moments; Pareto distribution
GAMS: L4a1a4e
Robust estimation, median, median absolute deviation, robust standard deviation
Names: g07daf; nagf_univar_robust_1var_median
Keywords: mean; median; robust estimation; standard deviation
GAMS: L1a1
Robust estimation, M-estimates for location and scale parameters, standard weight functions
Names: g07dbf; nagf_univar_robust_1var_mestim
Keywords: location, robust estimation; M-estimates; robust estimation; scale parameters
GAMS: L1a1
Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
Names: g07dcc; nag_robust_m_estim_1var_usr
Keywords: location, robust estimation; M-estimates; robust estimation; scale parameters
GAMS: L1a1
Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
Names: g07dcf; nagf_univar_robust_1var_mestim_wgt
Keywords: location, robust estimation; M-estimates; robust estimation; scale parameters
GAMS: L1a1
Computes a trimmed and winsorized mean of a single sample with estimates of their variance
Names: g07ddf; nagf_univar_robust_1var_trimmed
Keywords: trimmed mean; variance; winsorized mean
GAMS: L1a1
Robust confidence intervals, one-sample
Names: g07eac; nag_rank_ci_1var
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Robust confidence intervals, one-sample
Names: g07eaf; nagf_univar_robust_1var_ci
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Robust confidence intervals, two-sample
Names: g07ebc; nag_rank_ci_2var
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Robust confidence intervals, two-sample
Names: g07ebf; nagf_univar_robust_2var_ci
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Performs the Wilcoxon one-sample (matched pairs) signed rank test
Names: g08agf; nagf_nonpar_test_wilcoxon
Keywords: signed rank test; Wilcoxon signed rank test
GAMS: L4a1b1
Computes the exact probabilities for the Mann–Whitney U statistic, ties in pooled sample
Names: g08akf; nagf_nonpar_prob_mwu_ties
Keywords: Mann–Whitney U statistic; Neumann algorithm; pooled sample; tail probabilities
GAMS: L4a1b1
Performs the one-sample Kolmogorov–Smirnov test for standard distributions
Names: g08cbc; nag_1_sample_ks_test
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Performs the one-sample Kolmogorov–Smirnov test for standard distributions
Names: g08cbf; nagf_nonpar_test_ks_1sample
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Performs the one-sample Kolmogorov–Smirnov test for a user-supplied distribution
Names: g08ccf; nagf_nonpar_test_ks_1sample_user
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Performs the two-sample Kolmogorov–Smirnov test
Names: g08cdf; nagf_nonpar_test_ks_2sample
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic
Names: g08chc; nag_anderson_darling_stat
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic
Names: g08chf; nagf_nonpar_gofstat_anddar
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of uniformly distributed data
Names: g08cjc; nag_anderson_darling_uniform_prob
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of uniformly distributed data
Names: g08cjf; nagf_nonpar_gofstat_anddar_unif
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of a fully-unspecified Normal distribution
Names: g08ckc; nag_anderson_darling_normal_prob
Keywords: Anderson–Darling test statistic; Gaussian distribution; Normal distribution; probability
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of a fully-unspecified Normal distribution
Names: g08ckf; nagf_nonpar_gofstat_anddar_normal
Keywords: Anderson–Darling test statistic; Gaussian distribution; Normal distribution; probability
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of an unspecified exponential distribution
Names: g08clc; nag_anderson_darling_exp_prob
Keywords: Anderson–Darling test statistic; exponential distribution; probability
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of an unspecified exponential distribution
Names: g08clf; nagf_nonpar_gofstat_anddar_exp
Keywords: Anderson–Darling test statistic; exponential distribution; probability
GAMS: L4a1c
Performs the runs up or runs down test for randomness
Names: g08eac; nag_runs_test
Keywords: randomness, tests for; runs up and runs down test for randomness
GAMS: L4a1d
Performs the runs up or runs down test for randomness
Names: g08eaf; nagf_nonpar_randtest_runs
Keywords: randomness, tests for; runs up and runs down test for randomness
GAMS: L4a1d
Regression using ranks, uncensored data
Names: g08rac; nag_rank_regsn
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Regression using ranks, uncensored data
Names: g08raf; nagf_nonpar_rank_regsn
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Regression using ranks, right-censored data
Names: g08rbc; nag_rank_regsn_censored
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Regression using ranks, right-censored data
Names: g08rbf; nagf_nonpar_rank_regsn_censored
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Kernel density estimate using Gaussian kernel (thread safe)
Names: g10bbc; nag_kernel_density_gauss
Keywords: kernel density
GAMS: L4a1b2
Kernel density estimate using Gaussian kernel (thread safe)
Names: g10bbf; nagf_smooth_kerndens_gauss
Keywords: kernel density
GAMS: L4a1b2
Compute smoothed data sequence using running median smoothers
Names: g10caf; nagf_smooth_data_runningmedian
Keywords: running median; smoothing; Tukey's smoothing
GAMS: L8h
Computes multiway table from set of classification factors using given percentile/quantile
Names: g11bbf; nagf_contab_tabulate_percentile
Keywords: classification variable; factor variable; table
GAMS: L1c1, L2b, L9
Computes marginal tables for multiway table computed by
g11bac or
g11bbc Names: g11bcc; nag_tabulate_margin
Keywords: marginal tables
GAMS: L2b,
L9Computes marginal tables for multiway table computed by
g11baf or
g11bbf Names: g11bcf; nagf_contab_tabulate_margin
Keywords: marginal tables
GAMS: L2b,
L9Returns parameter estimates for the conditional analysis of stratified data
Names: g11cac; nag_condl_logistic
Keywords: conditional logistic analysis; logistic analysis; parameter estimates; stratified data
GAMS: L9, L15
Returns parameter estimates for the conditional analysis of stratified data
Names: g11caf; nagf_contab_condl_logistic
Keywords: conditional logistic analysis; logistic analysis; parameter estimates; stratified data
GAMS: L9, L15
Contingency table, latent variable model for binary data
Names: g11sac; nag_binary_factor
Keywords: factor scores; latent variable model; score patterns; theta scores
GAMS: L13a
Contingency table, latent variable model for binary data
Names: g11saf; nagf_contab_binary
Keywords: factor scores; latent variable model; score patterns; theta scores
GAMS: L13a
Computes rank statistics for comparing survival curves
Names: g12abc; nag_surviv_logrank
Keywords: log rank test; rank statistics
GAMS: L15
Computes rank statistics for comparing survival curves
Names: g12abf; nagf_surviv_logrank
Keywords: log rank test; rank statistics
GAMS: L15
Fits Cox's proportional hazard model
Names: g12baf; nagf_surviv_coxmodel
Keywords: Cox proportional hazard model
GAMS: L15
Univariate time series, sample autocorrelation function
Names: g13abf; nagf_tsa_uni_autocorr
Keywords: autocorrelation coefficients; finance; mean; test statistic; time series; univariate time series; variance
GAMS: L10a2a1
Univariate time series, preliminary estimation, seasonal ARIMA model
Names: g13adf; nagf_tsa_uni_arima_prelim
Keywords: ARIMA; finance; time series; univariate time series
GAMS: L10a2d1
Univariate time series, estimation, seasonal ARIMA model (comprehensive)
Names: g13aef; nagf_tsa_uni_arima_estim
Keywords: ARIMA; time series; univariate time series
GAMS: L10a2d2
Univariate time series, estimation, seasonal ARIMA model (easy-to-use)
Names: g13aff; nagf_tsa_uni_arima_estim_easy
Keywords: ARIMA; finance; time series; univariate time series
GAMS: L10a2d2
Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model
Names: g13ajf; nagf_tsa_uni_arima_forcecast
Keywords: finance; forecasting; standard deviation; time series; univariate time series
GAMS: L10a2d3
Univariate time series, diagnostic checking of residuals, following
g13aef or
g13aff Names: g13asf; nagf_tsa_uni_arima_resid
Keywords: ARMA; autocorrelation function; Box–Jenkins models; Box–Ljung portmanteau statistic; finance; significance; standard errors; time series; univariate time series
GAMS: L10a2d2Computes (augmented) Dickey–Fuller unit root test statistic
Names: g13awc; nag_tsa_dickey_fuller_unit
Keywords: Dickey–Fuller; unit root
GAMS: L10a2b
Computes (augmented) Dickey–Fuller unit root test statistic
Names: g13awf; nagf_tsa_uni_dickey_fuller_unit
Keywords: Dickey–Fuller; unit root
GAMS: L10a2b
Multivariate time series, filtering (pre-whitening) by an ARIMA model
Names: g13bac; nag_tsa_arma_filter
Keywords: ARIMA; filtering; finance; multivariate time series; pre-whitening, filtering; time series
GAMS: L10b2b
Multivariate time series, filtering (pre-whitening) by an ARIMA model
Names: g13baf; nagf_tsa_multi_filter_arima
Keywords: ARIMA; filtering; finance; multivariate time series; pre-whitening, filtering; time series
GAMS: L10b2b
Multivariate time series, filtering by a transfer function model
Names: g13bbc; nag_tsa_transf_filter
Keywords: filtering; finance; multivariate time series; time series
GAMS: L10a1c4
Multivariate time series, filtering by a transfer function model
Names: g13bbf; nagf_tsa_multi_filter_transf
Keywords: filtering; finance; multivariate time series; time series
GAMS: L10a1c4
Multivariate time series, cross-correlations
Names: g13bcc; nag_tsa_cross_corr
Keywords: cross-correlation; finance; multivariate time series; time series
GAMS: L10b2a
Multivariate time series, cross-correlations
Names: g13bcf; nagf_tsa_multi_xcorr
Keywords: cross-correlation; finance; multivariate time series; time series
GAMS: L10b2a
Multivariate time series, preliminary estimation of transfer function model
Names: g13bdc; nag_tsa_transf_prelim_fit
Keywords: finance; multivariate time series; time series
GAMS: L10b2b
Multivariate time series, preliminary estimation of transfer function model
Names: g13bdf; nagf_tsa_multi_transf_prelim
Keywords: finance; multivariate time series; time series
GAMS: L10b2b
Multivariate time series, estimation of multi-input model
Names: g13bef; nagf_tsa_multi_inputmod_estim
Keywords: ARIMA; exact likelihood; finance; marginal likelihood; multivariate time series; nonlinear least squares; time series; univariate time series
GAMS: L10a2d2, L10b2b
Multivariate time series, state set and forecasts from fully specified multi-input model
Names: g13bjf; nagf_tsa_multi_inputmod_forecast
Keywords: finance; forecasting; multivariate time series; time series
GAMS: L10b2b
Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13cac; nag_tsa_spectrum_univar_cov
Keywords: Bartlett lag window; finance; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window; univariate time series
GAMS: L10a3a4
Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13caf; nagf_tsa_uni_spectrum_lag
Keywords: Bartlett lag window; finance; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window; univariate time series
GAMS: L10a3a4
Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window
Names: g13cbf; nagf_tsa_uni_spectrum_daniell
Keywords: Daniell window; finance; smoothing; spectral smoothing; time series; trapezium frequency window; univariate time series
GAMS: L10a3a3
Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13ccc; nag_tsa_spectrum_bivar_cov
Keywords: Bartlett lag window; cross-spectrum; finance; multivariate time series; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window
GAMS: L10b3a4
Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13ccf; nagf_tsa_multi_spectrum_lag
Keywords: Bartlett lag window; cross-spectrum; finance; multivariate time series; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window
GAMS: L10b3a4
Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window
Names: g13cdf; nagf_tsa_multi_spectrum_daniell
Keywords: cross-spectrum; Daniell window; finance; multivariate time series; smoothing; spectral smoothing; time series; trapezium frequency window
GAMS: L10b3a3
Multivariate time series, noise spectrum, bounds, impulse response function and its standard error
Names: g13cgf; nagf_tsa_multi_noise_bivar
Keywords: finance; impulse response function; multivariate time series; noise spectrum; standard errors; time series
GAMS: L10b3a6
Multivariate time series, multiple squared partial autocorrelations
Names: g13dbc; nag_tsa_multi_auto_corr_part
Keywords: multivariate time series; partial autocorrelation coefficients; time series
GAMS: L10c
Multivariate time series, multiple squared partial autocorrelations
Names: g13dbf; nagf_tsa_multi_autocorr_part
Keywords: multivariate time series; partial autocorrelation coefficients; time series
GAMS: L10c
Multivariate time series, estimation of VARMA model
Names: g13ddc; nag_tsa_varma_estimate
Keywords: correlation matrix; finance; maximum likelihood; multivariate time series; standard errors; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, estimation of VARMA model
Names: g13ddf; nagf_tsa_multi_varma_estimate
Keywords: correlation matrix; finance; maximum likelihood; multivariate time series; standard errors; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, forecasts and their standard errors
Names: g13djc; nag_tsa_varma_forecast
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, forecasts and their standard errors
Names: g13djf; nagf_tsa_multi_varma_forecast
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, updates forecasts and their standard errors
Names: g13dkc; nag_tsa_varma_update
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, updates forecasts and their standard errors
Names: g13dkf; nagf_tsa_multi_varma_update
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, differences and/or transforms
Names: g13dlc; nag_tsa_multi_diff
Keywords: finance; multivariate time series; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, differences and/or transforms
Names: g13dlf; nagf_tsa_multi_diff
Keywords: finance; multivariate time series; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, sample cross-correlation or cross-covariance matrices
Names: g13dmc; nag_tsa_multi_cross_corr
Keywords: cross-correlation; cross-covariance; multivariate time series; time series
GAMS: L10c
Multivariate time series, sample cross-correlation or cross-covariance matrices
Names: g13dmf; nagf_tsa_multi_corrmat_cross
Keywords: cross-correlation; cross-covariance; multivariate time series; time series
GAMS: L10c
Multivariate time series, sample partial lag correlation matrices, χ2 statistics and significance levels
Names: g13dnc; nag_tsa_multi_part_lag_corr
Keywords: chi squared statistics; multivariate time series; partial lag; significance; time series
GAMS: L10c
Multivariate time series, sample partial lag correlation matrices, χ2 statistics and significance levels
Names: g13dnf; nagf_tsa_multi_corrmat_partlag
Keywords: chi squared statistics; multivariate time series; partial lag; significance; time series
GAMS: L10c
Multivariate time series, partial autoregression matrices
Names: g13dpc; nag_tsa_multi_part_regsn
Keywords: multivariate time series; partial autoregression matrices; time series
GAMS: L10c
Multivariate time series, partial autoregression matrices
Names: g13dpf; nagf_tsa_multi_regmat_partial
Keywords: multivariate time series; partial autoregression matrices; time series
GAMS: L10c
Multivariate time series, diagnostic checking of residuals, following
g13ddc Names: g13dsc; nag_tsa_varma_diagnostic
Keywords: multivariate time series; time series
GAMS: L10cMultivariate time series, diagnostic checking of residuals, following
g13ddf Names: g13dsf; nagf_tsa_multi_varma_diag
Keywords: multivariate time series; time series
GAMS: L10cCalculates the zeros of a vector autoregressive (or moving average) operator
Names: g13dxc; nag_tsa_arma_roots
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L10a2f, L10c
Calculates the zeros of a vector autoregressive (or moving average) operator
Names: g13dxf; nagf_tsa_uni_arma_roots
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L10a2f, L10c
One iteration step of the time-varying Kalman filter recursion using the square root covariance implementation
Names: g13eac; nag_kalman_sqrt_filt_cov_var
Keywords: Kalman filter
GAMS: L10a2e
Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter
Names: g13eaf; nagf_tsa_multi_kalman_sqrt_var
Keywords: Kalman filter
GAMS: L10a2e
One iteration step of the time-invariant Kalman filter recursion using the square root covariance implementation with (A,C) in lower observer Hessenberg form
Names: g13ebc; nag_kalman_sqrt_filt_cov_invar
Keywords: Kalman filter
GAMS: L10a2e
Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter
Names: g13ebf; nagf_tsa_multi_kalman_sqrt_invar
Keywords: Kalman filter
GAMS: L10a2e
One iteration step of the time-varying Kalman filter recursion using the square root information implementation
Names: g13ecc; nag_kalman_sqrt_filt_info_var
Keywords: time; time series
GAMS: L10a2e
One iteration step of the time-invariant Kalman filter recursion using the square root information implementation with (A-1,A-1B) in upper controller Hessenberg form
Names: g13edc; nag_kalman_sqrt_filt_info_invar
Keywords: time; time series
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise (reverse communication)
Names: g13ejc; nag_kalman_unscented_state_revcom
Keywords: filter; time series; transform; UKF; unscented; UT
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise (reverse communication)
Names: g13ejf; nagf_tsa_kalman_unscented_state_revcom
Keywords: filter; time series; transform; UKF; unscented; UT
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise
Names: g13ekc; nag_kalman_unscented_state
Keywords: filter; time series; UKF; unscented
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise
Names: g13ekf; nagf_tsa_kalman_unscented_state
Keywords: filter; time series; UKF; unscented
GAMS: L10a2e
Unitary state-space transformation to reduce (A,C) to lower or upper observer Hessenberg form
Names: g13ewc; nag_trans_hessenberg_observer
Keywords: time series
GAMS: L10a2e
Unitary state-space transformation to reduce (B,A) to lower or upper controller Hessenberg form
Names: g13exc; nag_trans_hessenberg_controller
Keywords: time series
GAMS: L10a2e
Univariate time series, parameter estimation for either a symmetric GARCH process or a GARCH process with asymmetry of the form (εt-1+γ)2
Names: g13faf; nagf_tsa_uni_garch_asym1_estim
Keywords: finance; GARCH; time series; univariate time series
GAMS: L10a2
Univariate time series, parameter estimation for a GARCH process with asymmetry of the form ( |εt-1| +γεt-1)2
Names: g13fcf; nagf_tsa_uni_garch_asym2_estim
Keywords: finance; GARCH; time series; univariate time series
GAMS: L10a2
Univariate time series, parameter estimation for an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process
Names: g13fef; nagf_tsa_uni_garch_gjr_estim
Keywords: finance; GARCH; GJR GARCH process; Glosten, Jagannathan and Runkle process; time series; univariate time series
GAMS: L10a2
Univariate time series, parameter estimation for an exponential GARCH (EGARCH) process
Names: g13fgf; nagf_tsa_uni_garch_exp_estim
Keywords: EGARCH; exponential GARCH; finance; GARCH; time series; univariate time series
GAMS: L10a2
Computes the iterated exponential moving average for a univariate inhomogeneous time series
Names: g13mec; nag_tsa_inhom_iema
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the iterated exponential moving average for a univariate inhomogeneous time series
Names: g13mef; nagf_tsa_inhom_iema
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the iterated exponential moving average for a univariate inhomogeneous time series, intermediate results are also returned
Names: g13mfc; nag_tsa_inhom_iema_all
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the iterated exponential moving average for a univariate inhomogeneous time series, intermediate results are also returned
Names: g13mff; nagf_tsa_inhom_iema_all
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the exponential moving average for a univariate inhomogeneous time series
Names: g13mgc; nag_tsa_inhom_ma
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the exponential moving average for a univariate inhomogeneous time series
Names: g13mgf; nagf_tsa_inhom_ma
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Change point detection, using binary segmentation
Names: g13ndc; nag_tsa_cp_binary
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Change point detection, using binary segmentation
Names: g13ndf; nagf_tsa_cp_binary
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Change point detection, using binary segmentation, user supplied cost function
Names: g13nec; nag_tsa_cp_binary_user
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Change point detection, using binary segmentation, user supplied cost function
Names: g13nef; nagf_tsa_cp_binary_user
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Construct a design matrix from a linear model specified using
g22yac Names: g22ycc; nag_blgm_lm_design_matrix
Keywords: design matrix; regression
GAMS: LConstruct a design matrix from a linear model specified using
g22yaf Names: g22ycf; nagf_blgm_lm_design_matrix
Keywords: design matrix; regression
GAMS: LConstruct a vector indicating which columns of a design matrix to include in a submodel specified using
g22yac Names: g22ydc; nag_blgm_lm_submodel
Keywords: design matrix; regression
GAMS: LConstruct a vector indicating which columns of a design matrix to include in a submodel specified using
g22yaf Names: g22ydf; nagf_blgm_lm_submodel
Keywords: design matrix; regression
GAMS: LInteger LP problem (dense)
Names: h02bbf; nagf_mip_ilp_dense
Keywords: branch and bound; finance; integer programming; mixed integer programming
GAMS: G2c1, G2c6, G2c7, G2c6, G2c7, G2c1
Interpret MPSX data file defining IP or LP problem, optimize and print solution
Names: h02bff; nagf_mip_ilp_mpsx
Keywords: branch and bound; integer programming; mixed integer programming; MPSX format
GAMS: G2a1, G2c7
Mixed integer linear programming (MILP), large-scale, branch and bound method
Names: h02bkc; nag_mip_handle_solve_milp
Keywords: HIGHS; mixed integer linear programming
GAMS: G2c1, G2c6, G2c7, G2c6, G2c7, G2c1
Mixed integer linear programming (MILP), large-scale, branch and bound method
Names: h02bkf; nagf_mip_handle_solve_milp
Keywords: HIGHS; mixed integer linear programming
GAMS: G2c1, G2c6, G2c7, G2c6, G2c7, G2c1
Print IP or LP solutions with user-specified names for rows and columns
Names: h02bvf; nagf_mip_ilp_print
Keywords: integer programming; linear programming
GAMS: G4f
Integer QP problem (dense)
Names: h02cbf; nagf_mip_iqp_dense
Keywords: branch and bound; finance; integer programming; integer quadratic program; mixed integer programming; QP, quadratic programming
GAMS: G2a1, G2e1, G2e2, G4d
Integer LP or QP problem (sparse), using
e04nkf Names: h02cef; nagf_mip_iqp_sparse
Keywords: branch and bound; finance; integer programming; integer quadratic program; mixed integer programming; QP, quadratic programming
GAMS: G2a2,
G2e1,
G2e2,
G4dMixed integer nonlinear programming
Names: h02dac; nag_mip_sqp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Mixed integer nonlinear programming
Names: h02daf; nagf_mip_sqp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Mixed integer nonlinear programming (MINLP)
Names: h02ddc; nag_mip_handle_solve_minlp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Mixed integer nonlinear programming (MINLP)
Names: h02ddf; nagf_mip_handle_solve_minlp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Option setting routine for
h02dac Names: h02zkc; nag_mip_opt_set
Keywords: options, computational
GAMS: G4fOption setting routine for
h02daf Names: h02zkf; nagf_mip_optset
Keywords: options, computational
GAMS: G4fTravelling Salesman Problem, simulated annealing
Names: h03bbc; nag_mip_tsp_simann
Keywords: shortest path; simulated annealing; Travelling Salesman Problem; TSP
GAMS: G2d1
Travelling Salesman Problem, simulated annealing
Names: h03bbf; nagf_mip_tsp_simann
Keywords: shortest path; simulated annealing; Travelling Salesman Problem; TSP
GAMS: G2d1
Best n subsets of size p (reverse communication)
Names: h05aac; nag_best_subset_given_size_revcomm
Keywords: best subset; subsetting, best
GAMS: Z
Best n subsets of size p (reverse communication)
Names: h05aaf; nagf_mip_best_subset_given_size_revcomm
Keywords: best subset; subsetting, best
GAMS: Z
Best n subsets of size p (direct communication)
Names: h05abc; nag_best_subset_given_size
Keywords: best subset; subsetting, best
GAMS: Z
Best n subsets of size p (direct communication)
Names: h05abf; nagf_mip_best_subset_given_size
Keywords: best subset; subsetting, best
GAMS: Z
Sort a vector, real numbers
Names: m01caf; nagf_sort_realvec_sort
Keywords: quicksort, double; sort
GAMS: N6a2b
Sort a vector, integer numbers
Names: m01cbf; nagf_sort_intvec_sort
Keywords: sort
GAMS: N6a2a
Sort a vector, character data
Names: m01ccf; nagf_sort_charvec_sort
Keywords: sort
GAMS: N6a2c
Searches an ordered set of real numbers using an O(1) method
Names: m01ndc; nag_sort_realvec_vec_search
Keywords: O(1) method
GAMS: N6a2b
Searches an ordered set of real numbers using an O(1) method
Names: m01ndf; nagf_sort_realvec_vec_search
Keywords: O(1) method
GAMS: N6a2b
Real confluent hypergeometric function 1F1(a;b;x)
Names: s22bac; nag_specfun_1f1_real
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Real confluent hypergeometric function 1F1(a;b;x)
Names: s22baf; nagf_specfun_1f1_real
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Real confluent hypergeometric function 1F1(a;b;x) in scaled form
Names: s22bbc; nag_specfun_1f1_real_scaled
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Real confluent hypergeometric function 1F1(a;b;x) in scaled form
Names: s22bbf; nagf_specfun_1f1_real_scaled
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Calculates values of real periodic angular Mathieu functions
Names: s22cac; nag_specfun_mathieu_ang_periodic_real
Keywords: Mathieu
GAMS: C17
Calculates values of real periodic angular Mathieu functions
Names: s22caf; nagf_specfun_mathieu_ang_periodic_real
Keywords: Mathieu
GAMS: C17
Black–Scholes–Merton option pricing formula
Names: s30aac; nag_bsm_price
Keywords: Black–Scholes option pricing; derivative, options; finance; option pricing
GAMS: C19
Black–Scholes–Merton option pricing formula
Names: s30aaf; nagf_specfun_opt_bsm_price
Keywords: Black–Scholes option pricing; derivative, options; finance; option pricing
GAMS: C19
Black–Scholes–Merton option pricing formula with Greeks
Names: s30abc; nag_bsm_greeks
Keywords: Black–Scholes option pricing; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Black–Scholes–Merton option pricing formula with Greeks
Names: s30abf; nagf_specfun_opt_bsm_greeks
Keywords: Black–Scholes option pricing; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Black–Scholes–Merton implied volatility
Names: s30acc; nag_specfun_opt_imp_vol
Keywords: Black–Scholes option pricing; finance; implied volatilities; implied volatility; option pricing
GAMS: C19
Black–Scholes–Merton implied volatility
Names: s30acf; nagf_specfun_opt_imp_vol
Keywords: Black–Scholes option pricing; finance; implied volatilities; implied volatility; option pricing
GAMS: C19
Floating-strike lookback option pricing formula in the Black-Scholes-Merton model
Names: s30bac; nag_lookback_fls_price
Keywords: derivative, options; finance; floating-strike lookback option; option pricing
GAMS: C19
Floating-strike lookback option pricing formula in the Black-Scholes-Merton model
Names: s30baf; nagf_specfun_opt_lookback_fls_price
Keywords: derivative, options; finance; floating-strike lookback option; option pricing
GAMS: C19
Floating-strike lookback option pricing formula with Greeks in the Black-Scholes-Merton model
Names: s30bbc; nag_lookback_fls_greeks
Keywords: derivative, options; finance; floating-strike lookback option; Greeks, options; option pricing
GAMS: C19
Floating-strike lookback option pricing formula with Greeks in the Black-Scholes-Merton model
Names: s30bbf; nagf_specfun_opt_lookback_fls_greeks
Keywords: derivative, options; finance; floating-strike lookback option; Greeks, options; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula
Names: s30cac; nag_binary_con_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula
Names: s30caf; nagf_specfun_opt_binary_con_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula with Greeks
Names: s30cbc; nag_binary_con_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula with Greeks
Names: s30cbf; nagf_specfun_opt_binary_con_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula
Names: s30ccc; nag_binary_aon_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula
Names: s30ccf; nagf_specfun_opt_binary_aon_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula with Greeks
Names: s30cdc; nag_binary_aon_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula with Greeks
Names: s30cdf; nagf_specfun_opt_binary_aon_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Standard barrier option pricing formula
Names: s30fac; nag_barrier_std_price
Keywords: barrier option; derivative, options; finance; option pricing
GAMS: C19
Standard barrier option pricing formula
Names: s30faf; nagf_specfun_opt_barrier_std_price
Keywords: barrier option; derivative, options; finance; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula
Names: s30jac; nag_jumpdiff_merton_price
Keywords: derivative, options; finance; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula
Names: s30jaf; nagf_specfun_opt_jumpdiff_merton_price
Keywords: derivative, options; finance; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula with Greeks
Names: s30jbc; nag_jumpdiff_merton_greeks
Keywords: derivative, options; finance; Greeks, options; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula with Greeks
Names: s30jbf; nagf_specfun_opt_jumpdiff_merton_greeks
Keywords: derivative, options; finance; Greeks, options; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Heston's model option pricing formula
Names: s30nac; nag_heston_price
Keywords: derivative, options; finance; finance; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing formula
Names: s30naf; nagf_specfun_opt_heston_price
Keywords: derivative, options; finance; finance; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing formula with Greeks
Names: s30nbc; nag_heston_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing formula with Greeks
Names: s30nbf; nagf_specfun_opt_heston_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing with term structure
Names: s30ncc; nag_heston_term
Keywords: European; finance; Heston; stochastic volatility; term structure
GAMS: C19
Heston's model option pricing with term structure
Names: s30ncf; nagf_specfun_opt_heston_term
Keywords: European; finance; Heston; stochastic volatility; term structure
GAMS: C19
Heston's model option pricing formula with Greeks, sensitivities of model parameters and negative rates
Names: s30ndc; nag_heston_more_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; Heston model, sensitivities; negative rate, options; option pricing
GAMS: C19
Heston's model option pricing formula with Greeks, sensitivities of model parameters and negative rates
Names: s30ndf; nagf_specfun_opt_heston_more_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; Heston model, sensitivities; negative rate, options; option pricing
GAMS: C19
American option, Bjerksund and Stensland pricing formula
Names: s30qcc; nag_amer_bs_price
Keywords: American options; Bjerksund and Stensland pricing formula; finance
GAMS: C19
American option, Bjerksund and Stensland pricing formula
Names: s30qcf; nagf_specfun_opt_amer_bs_price
Keywords: American options; Bjerksund and Stensland pricing formula; finance
GAMS: C19
Asian option, geometric continuous average rate pricing formula
Names: s30sac; nag_asian_geom_price
Keywords: Asian option; derivative, options; finance; option pricing
GAMS: C19
Asian option, geometric continuous average rate pricing formula
Names: s30saf; nagf_specfun_opt_asian_geom_price
Keywords: Asian option; derivative, options; finance; option pricing
GAMS: C19
Asian option, geometric continuous average rate pricing formula with Greeks
Names: s30sbc; nag_asian_geom_greeks
Keywords: Asian option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Asian option, geometric continuous average rate pricing formula with Greeks
Names: s30sbf; nagf_specfun_opt_asian_geom_greeks
Keywords: Asian option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Returns the string error name corresponding to a C Libary exit error code
Names: x04ndc; nag_code_to_error_name
Keywords: input/output utilities
GAMS: Z