Guide to the NAG Library Documentation
How to Use the NAG Library

NAG Library
Keyword and GAMS Search

 

Use the text box below to enter keywords or routine names to search the NAG Library documentation.
Please see the Guide to the NAG Documentation for details on the use of this tool.

Results found: 2001

Results

Function
Name
 Details 
All zeros of real cubic equation
Names: c02akf; nagf_zeros_cubic_real
Keywords: cubic polynomial; root-finding
GAMS: F1a1
All zeros of real quartic equation
Names: c02alf; nagf_zeros_quartic_real
Keywords: quartic polynomials; root-finding
GAMS: F1a1
All zeros of complex cubic equation
Names: c02amf; nagf_zeros_cubic_complex
Keywords: cubic polynomial; root-finding
GAMS: F1a2
All zeros of complex quartic equation
Names: c02anf; nagf_zeros_quartic_complex
Keywords: quartic polynomials; root-finding
GAMS: F1a2
Solution of a system of nonlinear equations using Anderson acceleration
Names: c05mbc; nag_zero_nonlin_eqns_aa
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using Anderson acceleration
Names: c05mbf; nagf_roots_sys_func_aa
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using Anderson acceleration (reverse communication)
Names: c05mdc; nag_zero_nonlin_eqns_aa_rcomm
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using Anderson acceleration (reverse communication)
Names: c05mdf; nagf_roots_sys_func_aa_rcomm
Keywords: Anderson acceleration; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (easy-to-use)
Names: c05qbc; nag_zero_nonlin_eqns_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (easy-to-use)
Names: c05qbf; nagf_roots_sys_func_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (comprehensive)
Names: c05qcc; nag_zero_nonlin_eqns_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (comprehensive)
Names: c05qcf; nagf_roots_sys_func_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (reverse communication)
Names: c05qdc; nag_zero_nonlin_eqns_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using function values only (reverse communication)
Names: c05qdf; nagf_roots_sys_func_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a sparse system of nonlinear equations using function values only (easy-to-use)
Names: c05qsc; nag_zero_sparse_nonlin_eqns_easy
Keywords: discretised system; root-finding; sparse nonlinear system; zeros of transcendental functions
GAMS: F2
Solution of a sparse system of nonlinear equations using function values only (easy-to-use)
Names: c05qsf; nagf_roots_sparsys_func_easy
Keywords: discretised system; root-finding; sparse nonlinear system; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (easy-to-use)
Names: c05rbc; nag_zero_nonlin_eqns_deriv_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (easy-to-use)
Names: c05rbf; nagf_roots_sys_deriv_easy
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (comprehensive)
Names: c05rcc; nag_zero_nonlin_eqns_deriv_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (comprehensive)
Names: c05rcf; nagf_roots_sys_deriv_expert
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (reverse communication)
Names: c05rdc; nag_zero_nonlin_eqns_deriv_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Solution of a system of nonlinear equations using first derivatives (reverse communication)
Names: c05rdf; nagf_roots_sys_deriv_rcomm
Keywords: finance; root-finding; zeros of transcendental functions
GAMS: F2
Single one-dimensional real discrete Fourier transform, extra workspace for greater speed
Names: c06faf; nagf_sum_fft_real_1d_rfmt
Keywords: Fast Fourier Transform; FFT
GAMS: J1a1
Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed
Names: c06fbf; nagf_sum_fft_hermitian_1d_rfmt
Keywords: Fast Fourier Transform; FFT
GAMS: J1a2
Single one-dimensional complex discrete Fourier transform, extra workspace for greater speed
Names: c06fcf; nagf_sum_fft_complex_1d_sep
Keywords: Fast Fourier Transform; FFT
GAMS: J1a2
One-dimensional complex discrete Fourier transform of multidimensional data
Names: c06fff; nagf_sum_fft_complex_multid_1d_sep
Keywords: complex Fourier transform; Fast Fourier Transform; FFT
GAMS: J1a2
Multidimensional complex discrete Fourier transform of multidimensional data
Names: c06fjf; nagf_sum_fft_complex_multid_sep
Keywords: complex Fourier transform; Fast Fourier Transform; FFT
GAMS: J1b
Circular convolution or correlation of two real vectors, no restrictions on n
Names: c06fkc; nag_sum_convcorr_real
Keywords: convolution; correlation; Fast Fourier Transform; FFT
GAMS: D1a10, J2
Circular convolution or correlation of two real vectors, no restrictions on n
Names: c06fkf; nagf_sum_convcorr_real
Keywords: convolution; correlation; Fast Fourier Transform; FFT
GAMS: D1a10, J2
Three-dimensional complex discrete Fourier transform
Names: c06fxf; nagf_sum_fft_complex_3d_sep
Keywords: complex Fourier transform; Fast Fourier Transform; FFT
GAMS: J1b
Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex storage format for Hermitian sequences
Names: c06pac; nag_sum_fft_realherm_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a1
Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex storage format for Hermitian sequences
Names: c06paf; nagf_sum_fft_realherm_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a1
Single one-dimensional complex discrete Fourier transform, complex data type
Names: c06pcc; nag_sum_fft_complex_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Single one-dimensional complex discrete Fourier transform, complex data type
Names: c06pcf; nagf_sum_fft_complex_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
One-dimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pfc; nag_fft_multid_single
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
One-dimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pff; nagf_sum_fft_complex_multid_1d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Multidimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pjc; nag_fft_multid_full
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Multidimensional complex discrete Fourier transform of multidimensional data (using complex data type)
Names: c06pjf; nagf_sum_fft_complex_multid
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Circular convolution or correlation of two complex vectors
Names: c06pkf; nagf_sum_convcorr_complex
Keywords: convolution, vectors
GAMS: D1a10, J2
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using row ordered complex storage format for Hermitian sequences
Names: c06ppc; nag_sum_fft_realherm_1d_multi_row
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex; Fourier transforms, real
GAMS: J1a1
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using row ordered complex storage format for Hermitian sequences
Names: c06ppf; nagf_sum_fft_realherm_1d_multi_row
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex; Fourier transforms, real
GAMS: J1a1
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using column ordered complex storage format for Hermitian sequences
Names: c06pqc; nag_sum_fft_realherm_1d_multi_col
Keywords: discrete; Fast Fourier Transform; FFT; one-dimensional
GAMS: J1a1
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using column ordered complex storage format for Hermitian sequences
Names: c06pqf; nagf_sum_fft_realherm_1d_multi_col
Keywords: discrete; Fast Fourier Transform; FFT; one-dimensional
GAMS: J1a1
Multiple one-dimensional complex discrete Fourier transforms using complex data type
Names: c06prf; nagf_sum_fft_complex_1d_multi_row
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Multiple one-dimensional complex discrete Fourier transforms, complex data type
Names: c06psc; nag_sum_fft_complex_1d_multi
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Multiple one-dimensional complex discrete Fourier transforms, complex data type
Names: c06psf; nagf_sum_fft_complex_1d_multi_col
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1a2
Two-dimensional complex discrete Fourier transform, complex data type
Names: c06puc; nag_sum_fft_complex_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional complex discrete Fourier transform, complex data type
Names: c06puf; nagf_sum_fft_complex_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional real-to-complex discrete Fourier transform
Names: c06pvc; nag_sum_fft_real_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional real-to-complex discrete Fourier transform
Names: c06pvf; nagf_sum_fft_real_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional complex-to-real discrete Fourier transform
Names: c06pwc; nag_sum_fft_hermitian_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Two-dimensional complex-to-real discrete Fourier transform
Names: c06pwf; nagf_sum_fft_hermitian_2d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional complex discrete Fourier transform, complex data type
Names: c06pxc; nag_fft_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional complex discrete Fourier transform, complex data type
Names: c06pxf; nagf_sum_fft_complex_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional real-to-complex discrete Fourier transform
Names: c06pyc; nag_sum_fft_real_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional real-to-complex discrete Fourier transform
Names: c06pyf; nagf_sum_fft_real_3d
Keywords: Fast Fourier Transform; FFT; Fourier transforms, complex
GAMS: J1b
Three-dimensional complex-to-real discrete Fourier transform
Names: c06pzc; nag_sum_fft_hermitian_3d
Keywords: Fast Fourier Transform; FFT
GAMS: J1b
Three-dimensional complex-to-real discrete Fourier transform
Names: c06pzf; nagf_sum_fft_hermitian_3d
Keywords: Fast Fourier Transform; FFT
GAMS: J1b
Discrete sine transform (easy-to-use)
Names: c06raf; nagf_sum_fft_real_sine_simple
Keywords: sine transform
GAMS: J1a3
Discrete cosine transform (easy-to-use)
Names: c06rbf; nagf_sum_fft_real_cosine_simple
Keywords: cosine transform
GAMS: J1a3
Discrete quarter-wave sine transform (easy-to-use)
Names: c06rcf; nagf_sum_fft_real_qtrsine_simple
Keywords: sine transform
GAMS: J1a3
Discrete quarter-wave cosine transform (easy-to-use)
Names: c06rdf; nagf_sum_fft_real_qtrcosine_simple
Keywords: cosine transform
GAMS: J1a3
Multiple discrete sine transforms, simple
Names: c06rec; nag_sum_fft_sine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; sine transform
GAMS: J1a3
Multiple discrete sine transforms, simple
Names: c06ref; nagf_sum_fft_sine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; sine transform
GAMS: J1a3
Multiple discrete cosine transforms, simple
Names: c06rfc; nag_sum_fft_cosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real
GAMS: J1a3
Multiple discrete cosine transforms, simple
Names: c06rff; nagf_sum_fft_cosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real
GAMS: J1a3
Multiple discrete quarter-wave sine transforms, simple
Names: c06rgc; nag_sum_fft_qtrsine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave; sine transform
GAMS: J1a3
Multiple discrete quarter-wave sine transforms, simple
Names: c06rgf; nagf_sum_fft_qtrsine
Keywords: Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave; sine transform
GAMS: J1a3
Multiple discrete quarter-wave cosine transforms, simple
Names: c06rhc; nag_sum_fft_qtrcosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave
GAMS: J1a3
Multiple discrete quarter-wave cosine transforms, simple
Names: c06rhf; nagf_sum_fft_qtrcosine
Keywords: cosine transform; Discrete Fourier Transforms; Fast Fourier Transform; FFT; Fourier Transforms, real; quarter-wave
GAMS: J1a3
Multidimensional fast Gauss transform
Names: c06sac; nag_sum_fast_gauss
Keywords: Fast Gauss Transform; summation of series
GAMS: J
Multidimensional fast Gauss transform
Names: c06saf; nagf_sum_fast_gauss
Keywords: Fast Gauss Transform; summation of series
GAMS: J
Two-dimensional discrete wavelet transform
Names: c09eac; nag_dwt_2d
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Two-dimensional discrete wavelet transform
Names: c09eaf; nagf_wav_2d_sngl_fwd
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Two-dimensional inverse discrete wavelet transform
Names: c09ebc; nag_idwt_2d
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Two-dimensional inverse discrete wavelet transform
Names: c09ebf; nagf_wav_2d_sngl_inv
Keywords: discrete transform; wavelets; wavelets, two-dimensional
GAMS: J, L10a3
Three-dimensional discrete wavelet transform
Names: c09fac; nag_dwt_3d
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
Three-dimensional discrete wavelet transform
Names: c09faf; nagf_wav_3d_sngl_fwd
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
Three-dimensional inverse discrete wavelet transform
Names: c09fbc; nag_idwt_3d
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
Three-dimensional inverse discrete wavelet transform
Names: c09fbf; nagf_wav_3d_sngl_inv
Keywords: discrete transform; wavelets; wavelets, three-dimensional
GAMS: J, L10a3
One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands
Names: d01ahf; nagf_quad_1d_fin_well
Keywords: finance; integration, adaptive; quadrature, adaptive
GAMS: H2a1a1
Old routine for calculating weights and abscissae for Gaussian quadrature rules, replaced by d01tcf
Names: d01bcf; nagf_quad_1d_gauss_wgen
Keywords: abscissae; cubature; finance; integration, non-adaptive; weights and abscissae
GAMS: H2c
Two-dimensional quadrature, finite region
Names: d01dac; nag_quad_2d_fin
Keywords: finance; integration, multidimensional; quadrature, adaptive
GAMS: H2b1a1
Two-dimensional quadrature, finite region
Names: d01daf; nagf_quad_2d_fin
Keywords: finance; integration, multidimensional; quadrature, adaptive
GAMS: H2b1a1
Multidimensional adaptive quadrature over hyper-rectangle, multiple integrands
Names: d01eaf; nagf_quad_md_adapt_multi
Keywords: integration, adaptive; integration, multidimensional; quadrature, adaptive; vectorized quadrature
GAMS: H2b1a1
Multi-dimensional quadrature using sparse grids
Names: d01esc; nag_quad_md_sgq_multi_vec
Keywords: automatic; multidimensional; multiple integrands; sparse; vectorized
GAMS: H2b1a1
Multi-dimensional quadrature using sparse grids
Names: d01esf; nagf_quad_md_sgq_multi_vec
Keywords: automatic; multidimensional; multiple integrands; sparse; vectorized
GAMS: H2b1a1
Multidimensional adaptive quadrature over hyper-rectangle
Names: d01fcf; nagf_quad_md_adapt
Keywords: finance; integration, adaptive; integration, multidimensional; quadrature, adaptive
GAMS: H2b1a1
One-dimensional quadrature, integration of function defined by data values, Gill–Miller method
Names: d01gaf; nagf_quad_1d_data
Keywords: finance; Gill–Miller quadrature; integration, non-adaptive; quadrature non-adaptive
GAMS: H2a1b2
Multidimensional quadrature over hyper-rectangle, Monte Carlo method
Names: d01gbf; nagf_quad_md_mcarlo
Keywords: integration, multidimensional; Monte Carlo method; quadrature non-adaptive
GAMS: H2b1a1
Multidimensional quadrature, general product region, number-theoretic method
Names: d01gcf; nagf_quad_md_numth
Keywords: integration, multidimensional; Korobov–Conroy method, numerical integration; numerical integration; quadrature non-adaptive
GAMS: H2b1a2
Multidimensional quadrature, general product region, number-theoretic method
Names: d01gdc; nag_quad_md_numth_vec
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b1a2
Multidimensional quadrature, general product region, number-theoretic method, variant of d01gcf efficient on vector machines
Names: d01gdf; nagf_quad_md_numth_vec
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b1a2
Multidimensional quadrature over an n-simplex
Names: d01pac; nag_quad_md_simplex
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b2a2
Multidimensional quadrature over an n-simplex
Names: d01paf; nagf_quad_md_simplex
Keywords: finance; integration, multidimensional; quadrature non-adaptive
GAMS: H2b2a2
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
Names: d01rac; nag_quad_1d_gen_vec_multi_rcomm
Keywords: integration, adaptive; quadrature, adaptive
GAMS: H2a1a1
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
Names: d01raf; nagf_quad_1d_gen_vec_multi_rcomm
Keywords: integration, adaptive; quadrature, adaptive
GAMS: H2a1a1
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
Names: d01tcc; nag_quad_dim1_gauss_wgen
Keywords: abscissae; cubature; finance; integration, non-adaptive; integration, numerical; weights and abscissae
GAMS: H2c
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
Names: d01tcf; nagf_quad_dim1_gauss_wgen
Keywords: abscissae; cubature; finance; integration, non-adaptive; integration, numerical; weights and abscissae
GAMS: H2c
Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch
Names: d01tdc; nag_quad_1d_gauss_wrec
Keywords: abscissae; cubature; Gaussian; Golub; Golub and Welsch; integration; non-adaptive; weights and abscissae; Welsch
GAMS: H2c
Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch
Names: d01tdf; nagf_quad_1d_gauss_wrec
Keywords: abscissae; cubature; Gaussian; Golub; Golub and Welsch; integration; non-adaptive; weights and abscissae; Welsch
GAMS: H2c
Option setting routine
Names: d01zkc; nag_quad_opt_set
Keywords: integration, options; options, computational; quadrature, options
GAMS: H2c
Option setting routine
Names: d01zkf; nagf_quad_opt_set
Keywords: integration, options; options, computational; quadrature, options
GAMS: H2c
Ordinary differential equations, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined
Names: d02agf; nagf_ode_bvp_shoot_genpar_intern
Keywords: boundary value problem; BVP; shooting method, ODE
GAMS: I1b2, I1b3
Ordinary differential equations, initial value problem, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver)
Names: d02bjf; nagf_ode_ivp_rk_zero_simple
Keywords: initial value problem; IVP, initial value problem; RK45; Runge–Kutta–Merson, ODE
GAMS: I1a1a
Ordinary differential equations, stiff initial value problem, backward differentiation formulae method, until function of solution is zero, intermediate output (simple driver)
Names: d02ejf; nagf_ode_ivp_bdf_zero_simple
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Ordinary differential equations, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem
Names: d02gaf; nagf_ode_bvp_fd_nonlin_fixedbc
Keywords: boundary value problem; BVP; finite difference method, ODE
GAMS: I1b2
Ordinary differential equations, boundary value problem, finite difference technique with deferred correction, general linear problem
Names: d02gbf; nagf_ode_bvp_fd_lin_gen
Keywords: boundary value problem; BVP; finite difference method, ODE
GAMS: I1b1
Ordinary differential equations, boundary value problem, shooting and matching, boundary values to be determined
Names: d02haf; nagf_ode_bvp_shoot_bval
Keywords: boundary value problem; BVP; shooting method, ODE
GAMS: I1b2
Ordinary differential equations, boundary value problem, shooting and matching, general parameters to be determined
Names: d02hbf; nagf_ode_bvp_shoot_genpar
Keywords: boundary value problem; BVP; shooting method, ODE
GAMS: I1b2, I1b3
Ordinary differential equations, boundary value problem, collocation and least squares, single nth-order linear equation
Names: d02jaf; nagf_ode_bvp_coll_nth
Keywords: boundary value problem; BVP; collocation method
GAMS: I1b1
Ordinary differential equations, boundary value problem, collocation and least squares, system of first-order linear equations
Names: d02jbf; nagf_ode_bvp_coll_sys
Keywords: boundary value problem; BVP; collocation method
GAMS: I1b1
Explicit ordinary differential equations, stiff initial value problem, full Jacobian (comprehensive)
Names: d02nbf; nagf_ode_ivp_stiff_exp_fulljac
Keywords: backward difference formula; initial value problem; IVP, initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Explicit ordinary differential equations, stiff initial value problem, banded Jacobian (comprehensive)
Names: d02ncf; nagf_ode_ivp_stiff_exp_bandjac
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Explicit ordinary differential equations, stiff initial value problem, sparse Jacobian (comprehensive)
Names: d02ndf; nagf_ode_ivp_stiff_exp_sparjac
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Implicit ordinary differential equations/DAEs, initial value problem, DASSL method integrator
Names: d02nec; nag_dae_ivp_dassl_gen
Keywords: DAE, differential algebraic equations; DASSL, ordinary differential equations; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem
GAMS: I1a
Implicit ordinary differential equations/DAEs, initial value problem, DASSL method integrator
Names: d02nef; nagf_ode_dae_dassl_gen
Keywords: DAE, differential algebraic equations; DASSL, ordinary differential equations; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem
GAMS: I1a
Implicit/algebraic ordinary differential equations, stiff initial value problem, full Jacobian (comprehensive)
Names: d02ngf; nagf_ode_ivp_stiff_imp_fulljac
Keywords: backward difference formula; BDF, backward differentiation formula; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Implicit/algebraic ordinary differential equations, stiff initial value problem, banded Jacobian (comprehensive)
Names: d02nhf; nagf_ode_ivp_stiff_imp_bandjac
Keywords: backward difference formula; BDF, backward differentiation formula; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; Jacobian; stiff differential equations
GAMS: I1a2
Implicit/algebraic ordinary differential equations, stiff initial value problem, sparse Jacobian (comprehensive)
Names: d02njf; nagf_ode_ivp_stiff_imp_sparjac
Keywords: backward difference formula; BDF, backward differentiation formula; discretised system; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; Jacobian; ODE; stiff differential equations
GAMS: I1a2
Explicit ordinary differential equations, stiff initial value problem (reverse communication, comprehensive)
Names: d02nmf; nagf_ode_ivp_stiff_exp_revcom
Keywords: backward difference formula; BDF, backward differentiation formula; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Implicit/algebraic ordinary differential equations, stiff initial value problem (reverse communication, comprehensive)
Names: d02nnf; nagf_ode_ivp_stiff_imp_revcom
Keywords: backward difference formula; implicit algebraic ordinary differential equations; initial value problem; IVP, initial value problem; stiff differential equations
GAMS: I1a2
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over range with output
Names: d02pec; nag_ode_ivp_rkts_range
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over range with output
Names: d02pef; nagf_ode_ivp_rkts_range
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over one step
Names: d02pfc; nag_ode_ivp_rkts_onestep
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration over one step
Names: d02pff; nagf_ode_ivp_rkts_onestep
Keywords: first-order system; IVP, initial value problem; Nonstiff; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration by reverse communication
Names: d02pgc; nag_ode_ivp_rk_step_revcomm
Keywords: IVP, initial value problem; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Ordinary differential equations, initial value problem, Runge–Kutta method, integration by reverse communication
Names: d02pgf; nagf_ode_ivp_rk_step_revcomm
Keywords: IVP, initial value problem; RK23; RK45; RK78; Runge–Kutta–Merson
GAMS: I1a1a
Set up interpolant by reverse communication for solution and derivative evaluations at points within the range of the last integration step taken by d02pgc
Names: d02phc; nag_ode_ivp_rk_interp_setup
Keywords: first-order system; interpolation; IVP, initial value problem; Nonstiff; Runge–Kutta–Merson
GAMS: I1c
Set up interpolant by reverse communication for solution and derivative evaluations at points within the range of the last integration step taken by d02pgf
Names: d02phf; nagf_ode_ivp_rk_interp_setup
Keywords: first-order system; interpolation; IVP, initial value problem; Nonstiff; Runge–Kutta–Merson
GAMS: I1c
Ordinary differential equations, initial value problem, interpolation for d02pfc
Names: d02psc; nag_ode_ivp_rkts_interp
Keywords: interpolation; IVP, initial value problem; Runge–Kutta–Merson
GAMS: I1c
Ordinary differential equations, initial value problem, interpolation for d02pff
Names: d02psf; nagf_ode_ivp_rkts_interp
Keywords: interpolation; IVP, initial value problem; Runge–Kutta–Merson
GAMS: I1c
Ordinary differential equations, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
Names: d02raf; nagf_ode_bvp_fd_nonlin_gen
Keywords: BVP, boundary value problem; finite difference method, ODE
GAMS: I1b2
Ordinary differential equations, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined
Names: d02saf; nagf_ode_bvp_shoot_genpar_algeq
Keywords: boundary value problem; BVP; parameterized first order; shooting method, ODE; two-point boundary value problem
GAMS: I1b2
nth-order linear ordinary differential equations, boundary value problem, collocation and least squares
Names: d02tgf; nagf_ode_bvp_coll_nth_comp
Keywords: BVP, boundary value problem; collocation method
GAMS: I1b1
Ordinary differential equations, general nonlinear boundary value problem, collocation technique
Names: d02tlc; nag_ode_bvp_coll_nlin_solve
Keywords: boundary value problem; BVP; differential equations; nonlinear mixed order; ordinary differential equations; two-point boundary value problem
GAMS: I1b2
Ordinary differential equations, general nonlinear boundary value problem, collocation technique (thread safe)
Names: d02tlf; nagf_ode_bvp_coll_nlin_solve
Keywords: boundary value problem; BVP; differential equations; nonlinear mixed order; ordinary differential equations; two-point boundary value problem
GAMS: I1b2
Ordinary differential equations, general nonlinear boundary value problem, interpolation for d02tlc
Names: d02tyc; nag_ode_bvp_coll_nlin_interp
Keywords: BVP, boundary value problem; collocation method; interpolation
GAMS: I1c
Ordinary differential equations, general nonlinear boundary value problem, interpolation for d02tlf
Names: d02tyf; nagf_ode_bvp_coll_nlin_interp
Keywords: BVP, boundary value problem; collocation method; interpolation
GAMS: I1c
Coefficients of Chebyshev interpolating polynomial from function values on Chebyshev grid
Names: d02uac; nag_ode_bvp_ps_lin_coeffs
Keywords: Chebyshev polynomial interpolation; Gauss–Lobatto grid; interpolation
GAMS: E1b
Coefficients of Chebyshev interpolating polynomial from function values on Chebyshev grid
Names: d02uaf; nagf_ode_bvp_ps_lin_coeffs
Keywords: Chebyshev polynomial interpolation; Gauss–Lobatto grid; interpolation
GAMS: E1b
Function or low-order-derivative values on Chebyshev grid from coefficients of Chebyshev interpolating polynomial
Names: d02ubc; nag_ode_bvp_ps_lin_cgl_vals
Keywords: Chebyshev polynomial interpolation; Chebyshev series, solution; Gauss–Lobatto grid; interpolation
GAMS: E3a1, E3a2
Function or low-order-derivative values on Chebyshev grid from coefficients of Chebyshev interpolating polynomial
Names: d02ubf; nagf_ode_bvp_ps_lin_cgl_vals
Keywords: Chebyshev polynomial interpolation; Chebyshev series, solution; Gauss–Lobatto grid; interpolation
GAMS: E3a1, E3a2
Differentiate a function by the FFT using function values on Chebyshev grid
Names: d02udc; nag_ode_bvp_ps_lin_cgl_deriv
Keywords: Fast Fourier Transform; FFT; Gauss–Lobatto grid
GAMS: H1, E3a2
Differentiate a function by the FFT using function values on Chebyshev grid
Names: d02udf; nagf_ode_bvp_ps_lin_cgl_deriv
Keywords: Fast Fourier Transform; FFT; Gauss–Lobatto grid
GAMS: H1, E3a2
Solve linear constant coefficient boundary value problem on Chebyshev grid, Integral formulation
Names: d02uec; nag_ode_bvp_ps_lin_solve
Keywords: boundary value problem; BVP; Gauss–Lobatto grid; pseudo-spectral method
GAMS: I1b1
Solve linear constant coefficient boundary value problem on Chebyshev grid, Integral formulation
Names: d02uef; nagf_ode_bvp_ps_lin_solve
Keywords: boundary value problem; BVP; Gauss–Lobatto grid; pseudo-spectral method
GAMS: I1b1
Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain
Names: d03eaf; nagf_pde_2d_laplace
Keywords: elliptic partial differential equations; Laplace's equation
GAMS: I2b1a1b
Elliptic PDE, solution of finite difference equations by a multigrid technique
Names: d03edf; nagf_pde_2d_ellip_mgrid
Keywords: elliptic partial differential equations; multigrid method; rectangular; two-dimensional
GAMS: I2b4b
Elliptic PDE, Helmholtz equation, three-dimensional Cartesian coordinates
Names: d03faf; nagf_pde_3d_ellip_helmholtz
Keywords: elliptic partial differential equations; Helmholtz equation, PDE
GAMS: I2b1a1a
Finite difference solution of the Black–Scholes equations
Names: d03ncc; nag_pde_bs_1d
Keywords: Black–Scholes option pricing; one-dimensional; parabolic partial differential equation
GAMS: I2a1a
Finite difference solution of the Black–Scholes equations
Names: d03ncf; nagf_pde_1d_blackscholes_fd
Keywords: Black–Scholes option pricing; one-dimensional; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, finite differences, one space variable
Names: d03pcc; nag_pde_parab_1d_fd
Keywords: method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, finite differences, one space variable
Names: d03pca; nagf_pde_1d_parab_fd
Keywords: method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, finite differences, one space variable
Names: d03pcf; nagf_pde_1d_parab_fd_old
Keywords: method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pdc; nag_pde_parab_1d_coll
Keywords: collocation method; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pda; nagf_pde_1d_parab_coll
Keywords: collocation method; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of parabolic PDEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pdf; nagf_pde_1d_parab_coll_old
Keywords: collocation method; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of first-order PDEs, method of lines, Keller box discretization, one space variable
Names: d03pec; nag_pde_parab_1d_keller
Keywords: Keller box discretization; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of first-order PDEs, method of lines, Keller box discretization, one space variable
Names: d03pef; nagf_pde_1d_parab_keller
Keywords: Keller box discretization; method of lines; parabolic partial differential equation
GAMS: I2a1a
General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03pfc; nag_pde_parab_1d_cd
Keywords: convection-diffusion, PDE; method of lines; partial differential equations
GAMS: I2a2
General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03pff; nagf_pde_1d_parab_convdiff
Keywords: convection-diffusion, PDE; method of lines; partial differential equations
GAMS: I2a2
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
Names: d03phc; nag_pde_parab_1d_fd_ode
Keywords: DAE, differential algebraic equations; finite difference discretization; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
Names: d03pha; nagf_pde_1d_parab_dae_fd
Keywords: DAE, differential algebraic equations; finite difference discretization; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
Names: d03phf; nagf_pde_1d_parab_dae_fd_old
Keywords: DAE, differential algebraic equations; finite difference discretization; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pjc; nag_pde_parab_1d_coll_ode
Keywords: DAE, differential algebraic equations; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pja; nagf_pde_1d_parab_dae_coll
Keywords: DAE, differential algebraic equations; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C0 collocation, one space variable
Names: d03pjf; nagf_pde_1d_parab_dae_coll_old
Keywords: DAE, differential algebraic equations; method of lines; parabolic partial differential equation; partial differential equations
GAMS: I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, one space variable
Names: d03pkc; nag_pde_parab_1d_keller_ode
Keywords: DAE, differential algebraic equations; Keller box discretization; method of lines; partial differential equations
GAMS: I1a2, I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, one space variable
Names: d03pkf; nagf_pde_1d_parab_dae_keller
Keywords: DAE, differential algebraic equations; Keller box discretization; method of lines; partial differential equations
GAMS: I1a2, I2a1a
General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03plc; nag_pde_parab_1d_cd_ode
Keywords: convection-diffusion, PDE; DAE, differential algebraic equations; partial differential equations
GAMS: I2a2
General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
Names: d03plf; nagf_pde_1d_parab_convdiff_dae
Keywords: convection-diffusion, PDE; DAE, differential algebraic equations; partial differential equations
GAMS: I2a2
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
Names: d03ppc; nag_pde_parab_1d_fd_ode_remesh
Keywords: DAE, differential algebraic equations; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I1a2, I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
Names: d03ppa; nagf_pde_1d_parab_remesh_fd
Keywords: DAE, differential algebraic equations; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I1a2, I2a1a
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
Names: d03ppf; nagf_pde_1d_parab_remesh_fd_old
Keywords: DAE, differential algebraic equations; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I1a2, I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, remeshing, one space variable
Names: d03prc; nag_pde_parab_1d_keller_ode_remesh
Keywords: adaptive grid, PDE; DAE, differential algebraic equations; Keller box discretization; method of lines
GAMS: I1a2, I2a1a
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, remeshing, one space variable
Names: d03prf; nagf_pde_1d_parab_remesh_keller
Keywords: adaptive grid, PDE; DAE, differential algebraic equations; Keller box discretization; method of lines
GAMS: I1a2, I2a1a
General system of convection-diffusion PDEs, coupled DAEs, method of lines, upwind scheme, remeshing, one space variable
Names: d03psc; nag_pde_parab_1d_cd_ode_remesh
Keywords: adaptive grid, PDE; convection-diffusion, PDE; DAE, differential algebraic equations; hyperbolic equation; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I2a2
General system of convection-diffusion PDEs, coupled DAEs, method of lines, upwind scheme, remeshing, one space variable
Names: d03psf; nagf_pde_1d_parab_convdiff_remesh
Keywords: adaptive grid, PDE; convection-diffusion, PDE; DAE, differential algebraic equations; hyperbolic equation; method of lines; one-dimensional; parabolic partial differential equation
GAMS: I2a2
General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region
Names: d03raf; nagf_pde_2d_gen_order2_rectangle
Keywords: mesh refinement; method of lines; two-dimensional PDE
GAMS: I2a1b
General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectilinear region
Names: d03rbf; nagf_pde_2d_gen_order2_rectilinear
Keywords: mesh refinement; method of lines; two-dimensional PDE
GAMS: I2a1b
Linear nonsingular Fredholm integral equation, second kind, split kernel
Names: d05aac; nag_inteq_fredholm2_split
Keywords: Fredholm integral equations
GAMS: I3
Linear nonsingular Fredholm integral equation, second kind, split kernel
Names: d05aaf; nagf_inteq_fredholm2_split
Keywords: Fredholm integral equations
GAMS: I3
Linear nonsingular Fredholm integral equation, second kind, smooth kernel
Names: d05abc; nag_inteq_fredholm2_smooth
Keywords: Fredholm integral equations
GAMS: I3
Linear nonsingular Fredholm integral equation, second kind, smooth kernel
Names: d05abf; nagf_inteq_fredholm2_smooth
Keywords: Fredholm integral equations
GAMS: I3
Nonlinear Volterra convolution equation, second kind
Names: d05bac; nag_inteq_volterra2
Keywords: Volterra integral equations
GAMS: I3
Nonlinear Volterra convolution equation, second kind
Names: d05baf; nagf_inteq_volterra2
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, second kind, weakly singular
Names: d05bdc; nag_inteq_abel2_weak
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, second kind, weakly singular
Names: d05bdf; nagf_inteq_abel2_weak
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, first kind, weakly singular
Names: d05bec; nag_inteq_abel1_weak
Keywords: Volterra integral equations
GAMS: I3
Nonlinear convolution Volterra–Abel equation, first kind, weakly singular
Names: d05bef; nagf_inteq_abel1_weak
Keywords: Volterra integral equations
GAMS: I3
Generate weights for use in solving weakly singular Abel-type equations
Names: d05byc; nag_inteq_abel_weak_weights
Keywords: weights and abscissae
GAMS: I3
Generate weights for use in solving weakly singular Abel-type equations
Names: d05byf; nagf_inteq_abel_weak_weights
Keywords: weights and abscissae
GAMS: I3
Generates a two-dimensional mesh using a Delaunay–Voronoi process
Names: d06abc; nag_mesh2d_delaunay
Keywords: Delaunay–Voronoi process; triangular mesh
GAMS: I2b4a
Generates a two-dimensional mesh using a Delaunay–Voronoi process
Names: d06abf; nagf_mesh_2d_gen_delaunay
Keywords: Delaunay–Voronoi process; triangular mesh
GAMS: I2b4a
Generates a two-dimensional mesh using an Advancing-front method
Names: d06acc; nag_mesh2d_front
Keywords: Advancing-front method; triangular mesh
GAMS: I2b4a
Generates a two-dimensional mesh using an Advancing-front method
Names: d06acf; nagf_mesh_2d_gen_front
Keywords: Advancing-front method; triangular mesh
GAMS: I2b4a
Uses a barycentering technique to smooth a given mesh
Names: d06cac; nag_mesh2d_smooth
Keywords: barycentering; barycentric; smoothing
GAMS: I2b4a, K5
Uses a barycentering technique to smooth a given mesh
Names: d06caf; nagf_mesh_2d_smooth_bary
Keywords: barycentering; barycentric; smoothing
GAMS: I2b4a, K5
Generates a sparsity pattern of a Finite Element matrix associated with a given mesh
Names: d06cbc; nag_mesh2d_sparse
Keywords: finite element; sparsity pattern
GAMS: I2b4a
Generates a sparsity pattern of a Finite Element matrix associated with a given mesh
Names: d06cbf; nagf_mesh_2d_sparsity
Keywords: finite element; sparsity pattern
GAMS: I2b4a
Renumbers a given mesh using Gibbs method
Names: d06ccc; nag_mesh2d_renum
Keywords: Gibbs method; mesh renumbering
GAMS: I2b4a
Renumbers a given mesh using Gibbs method
Names: d06ccf; nagf_mesh_2d_renumber
Keywords: Gibbs method; mesh renumbering
GAMS: I2b4a
Interpolated values, variables computed by e01cec, monotone convex Hagan–West procedure, one variable
Names: e01cfc; nag_interp_1d_monconv_eval
Keywords: amelioration; Hagan–West; instantaneous forward rates; monotone convex interpolation; shape-preserving interpolation; yield curve
GAMS: E3a1
Interpolated values, variables computed by e01cef, monotone convex Hagan–West procedure, one variable
Names: e01cff; nagf_interp_dim1_monconv_eval
Keywords: amelioration; Hagan–West; instantaneous forward rates; monotone convex interpolation; shape-preserving interpolation; yield curve
GAMS: E3a1
Interpolating functions, fitting bicubic spline, data on rectangular grid
Names: e01daf; nagf_interp_2d_spline_grid
Keywords: bicubic spline; finance; two-dimensional
GAMS: E2a
Interpolating functions, modified Shepard's method, two variables
Names: e01sgc; nag_2d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, two variables
Names: e01sgf; nagf_interp_2d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01sgc, function and first derivatives, two variables
Names: e01shc; nag_2d_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01sgf, function and first derivatives, two variables
Names: e01shf; nagf_interp_2d_scat_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, three variables
Names: e01tgc; nag_3d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, three variables
Names: e01tgf; nagf_interp_3d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01tgc, function and first derivatives, three variables
Names: e01thc; nag_3d_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01tgf, function and first derivatives, three variables
Names: e01thf; nagf_interp_3d_scat_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, four variables
Names: e01tkc; nag_4d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, four variables
Names: e01tkf; nagf_interp_4d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01tkc, function and first derivatives, four variables
Names: e01tlc; nag_4d_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01tkf, function and first derivatives, four variables
Names: e01tlf; nagf_interp_4d_scat_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, five variables
Names: e01tmc; nag_5d_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating functions, modified Shepard's method, five variables
Names: e01tmf; nagf_interp_5d_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01tmc, function and first derivatives, five variables
Names: e01tnc; nag_5d_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01tmf, function and first derivatives, five variables
Names: e01tnf; nagf_interp_5d_scat_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolating function, modified Shepard's method, d dimensions
Names: e01zmc; nag_nd_shep_interp
Keywords: Shepard method
GAMS: E2b
Interpolating function, modified Shepard's method, d dimensions
Names: e01zmf; nagf_interp_nd_scat_shep
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01zmc, function and first derivatives, d dimensions
Names: e01znc; nag_nd_shep_eval
Keywords: Shepard method
GAMS: E2b
Interpolated values, evaluate interpolant computed by e01zmf, function and first derivatives, d dimensions
Names: e01znf; nagf_interp_nd_scat_shep_eval
Keywords: Shepard method
GAMS: E2b
Minimax curve fit by polynomials
Names: e02alc; nag_1d_minimax_polynomial
Keywords: minimax; surface fitting
GAMS: K2
Minimax curve fit by polynomials
Names: e02alf; nagf_fit_1d_minimax_polynomial
Keywords: minimax; surface fitting
GAMS: K2
Least squares cubic spline curve fit, automatic knot placement
Names: e02bef; nagf_fit_1dspline_auto
Keywords: B-splines; cubic splines; least squares; smoothing
GAMS: K1a1a1, L8g
Evaluation of fitted cubic spline, function and optionally derivatives at a vector of points
Names: e02bfc; nag_fit_1dspline_deriv_vector
Keywords: b-splines, derivative; cubic splines
GAMS: E1a, E3a1, E3a2, K1a1a1, K6a1, K6a2, L8g
Evaluation of fitted cubic spline, function and optionally derivatives at a vector of points
Names: e02bff; nagf_fit_1dspline_deriv_vector
Keywords: b-splines, derivative; cubic splines
GAMS: E1a, E3a1, E3a2, K1a1a1, K6a1, K6a2, L8g
Least squares surface fit by polynomials, data on lines parallel to one independent coordinate axis
Names: e02cac; nag_2d_cheb_fit_lines
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; data-on-lines polynomial approximation; least squares; polynomial approximation; two-dimensional polynomial approximation
GAMS: K1a1b
Least squares surface fit by polynomials, data on lines parallel to one independent coordinate axis
Names: e02caf; nagf_fit_2dcheb_lines
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; data-on-lines polynomial approximation; least squares; polynomial approximation; two-dimensional polynomial approximation
GAMS: K1a1b
Evaluation of fitted polynomial in two variables
Names: e02cbc; nag_2d_cheb_eval
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; polynomial approximation; two-dimensional polynomial approximation
GAMS: E3a1, K6a1
Evaluation of fitted polynomial in two variables
Names: e02cbf; nagf_fit_2dcheb_eval
Keywords: bivariate polynomial approximation; Chebyshev polynomial approximation; polynomial approximation; two-dimensional polynomial approximation
GAMS: E3a1, K6a1
Least squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid
Names: e02dcf; nagf_fit_2dspline_grid
Keywords: bicubic splines; B-splines; least squares; smoothing; two-dimensional spline approximation
GAMS: K1a1b
Least squares surface fit by bicubic splines with automatic knot placement, scattered data
Names: e02ddf; nagf_fit_2dspline_sctr
Keywords: bicubic splines; B-splines; least squares; scattered data; smoothing
GAMS: K1a1b
Evaluation of fitted bicubic spline at a mesh of points
Names: e02dff; nagf_fit_2dspline_evalm
Keywords: bicubic splines; B-splines; finance; gridded data
GAMS: E3a1
Evaluation of spline surface at mesh of points with derivatives
Names: e02dhc; nag_2d_spline_deriv_rect
Keywords: bicubic spline, partial derivative; bicubic splines
GAMS: K6a1, K6a2
Evaluation of spline surface at mesh of points with derivatives
Names: e02dhf; nagf_fit_2dspline_derivm
Keywords: bicubic spline, partial derivative; bicubic splines
GAMS: K6a1, K6a2
L1-approximation by general linear function subject to linear inequality constraints
Names: e02gbf; nagf_fit_glinc_l1sol
Keywords: L1 approximation; outlier detection
GAMS: D9b3
Spline approximation to a set of scattered data using a two-stage approximation method
Names: e02jdc; nag_2d_spline_fit_ts_scat
Keywords: radial basis functions; RBF; scattered data; spline; thin plate spline; TPS; two-dimensional spline approximation
GAMS: E2b
Spline approximation to a set of scattered data using a two-stage approximation method
Names: e02jdf; nagf_fit_2dspline_ts_sctr
Keywords: radial basis functions; RBF; scattered data; spline; thin plate spline; TPS; two-dimensional spline approximation
GAMS: E2b
Padé approximants
Names: e02rac; nag_1d_pade
Keywords: Padé approximation
GAMS: K4
Padé approximants
Names: e02raf; nagf_fit_pade_app
Keywords: Padé approximation
GAMS: K4
Option setting routine
Names: e02zkc; nag_fit_opt_set
Keywords: options, computational
GAMS: E3d
Option setting routine
Names: e02zkf; nagf_fit_opt_set
Keywords: options, computational
GAMS: E3d
Unconstrained minimum, Nelder–Mead simplex algorithm, using function values only
Names: e04cbc; nag_opt_simplex_easy
Keywords: derivative-free minimization; finance; minimization, unconstrained; Nelder–Mead algorithm; NLP; nonlinear programming; simplex algorithm
GAMS: G1b2
Unconstrained minimum, Nelder–Mead simplex algorithm, using function values only
Names: e04cbf; nagf_opt_uncon_simplex
Keywords: derivative-free minimization; finance; minimization, unconstrained; Nelder–Mead algorithm; NLP; nonlinear programming; simplex algorithm
GAMS: G1b2
Unconstrained minimum, preconditioned conjugate gradient algorithm, using first derivatives (comprehensive)
Names: e04dga; nagf_opt_uncon_conjgrd_comp
Keywords: conjugate gradient method; finance; minimization, unconstrained; NLP; nonlinear programming; quasi-Newton
GAMS: G1b1b
Unconstrained minimum, preconditioned conjugate gradient algorithm, using first derivatives (comprehensive)
Names: e04dgf; nagf_opt_uncon_conjgrd_comp_old
Keywords: conjugate gradient method; finance; minimization, unconstrained; NLP; nonlinear programming; quasi-Newton
GAMS: G1b1b
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using function values only (comprehensive)
Names: e04fcf; nagf_opt_lsq_uncon_mod_func_comp
Keywords: data fitting; derivative-free minimization; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a1, L8e1b1
Derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04ffc; nag_opt_handle_solve_dfls
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; nonlinear least squares; sum of squares
GAMS: G2h1a1
Derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04fff; nagf_opt_handle_solve_dfls
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; nonlinear least squares; sum of squares
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04fgc; nag_opt_handle_solve_dfls_rcomm
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; sum of squares
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear least squares objective function with bounded variables
Names: e04fgf; nagf_opt_handle_solve_dfls_rcomm
Keywords: calibration; data fitting; derivative-free optimization; DFO; finance; nonlinear least squares; sum of squares
GAMS: G2h1a1
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using function values only (easy-to-use)
Names: e04fyf; nagf_opt_lsq_uncon_mod_func_easy
Keywords: data fitting; derivative-free minimization; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a1, L8e1b1
Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm, using first derivatives (comprehensive)
Names: e04gbf; nagf_opt_lsq_uncon_quasi_deriv_comp
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; nonlinear least squares; quasi-Newton algorithm; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using first derivatives (comprehensive)
Names: e04gdf; nagf_opt_lsq_uncon_mod_deriv_comp
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Bound constrained nonlinear least squares, comprehensive trust-region algorithm using first (and second) derivatives
Names: e04ggc; nag_opt_handle_solve_bxnl
Keywords: calibration; data fitting; finance; Gauss–Newton optimization; nonlinear least squares; sum of squares
GAMS: K1b2a
Bound constrained nonlinear least squares, comprehensive trust-region algorithm using first (and second) derivatives
Names: e04ggf; nagf_opt_handle_solve_bxnl
Keywords: calibration; data fitting; finance; Gauss–Newton optimization; nonlinear least squares; sum of squares
GAMS: K1b2a
Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm, using first derivatives (easy-to-use)
Names: e04gyf; nagf_opt_lsq_uncon_quasi_deriv_easy
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; nonlinear least squares; quasi-Newton algorithm; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using first derivatives (easy-to-use)
Names: e04gzf; nagf_opt_lsq_uncon_mod_deriv_easy
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a2, L8e1b2
Check user's routine for calculating first derivatives of function
Names: e04hcf; nagf_opt_check_deriv
Keywords: check derivative; finance; minimization, unconstrained; service routine
GAMS: G4c
Check user's routine for calculating second derivatives of function
Names: e04hdf; nagf_opt_check_deriv2
Keywords: check derivative; finance; minimization, unconstrained; service routine
GAMS: G4c
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (comprehensive)
Names: e04hef; nagf_opt_lsq_uncon_mod_deriv2_comp
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a3
Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (easy-to-use)
Names: e04hyf; nagf_opt_lsq_uncon_mod_deriv2_easy
Keywords: data fitting; finance; Gauss–Newton optimization; minimization, unconstrained; Newton algorithm; nonlinear least squares; sum-of-squares minimization
GAMS: K1b1a3
Bound constrained minimum, model-based algorithm, using function values only
Names: e04jcc; nag_opt_bounds_qa_no_deriv
Keywords: BOBYQA method; finance; minimization, simple bound constraints; NLP; nonlinear programming
GAMS: G2h1a1
Bound constrained minimum, model-based algorithm, using function values only
Names: e04jcf; nagf_opt_bounds_bobyqa_func
Keywords: BOBYQA method; finance; minimization, simple bound constraints; NLP; nonlinear programming
GAMS: G2h1a1
Direct communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jdc; nag_opt_handle_solve_dfno
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Direct communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jdf; nagf_opt_handle_solve_dfno
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jec; nag_opt_handle_solve_dfno_rcomm
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Reverse communication derivative-free (DFO) solver for a nonlinear objective function with bounded variables
Names: e04jef; nagf_opt_handle_solve_dfno_rcomm
Keywords: BOBYQA method; derivative-free optimization; DFO; finance; NLP; nonlinear programming
GAMS: G2h1a1
Bound constrained minimum, quasi-Newton algorithm, using function values only (easy-to-use)
Names: e04jyf; nagf_opt_bounds_quasi_func_easy
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; finance; minimization, simple bound constraints; NLP; nonlinear programming; quasi-Newton algorithm
GAMS: G2h1a1
Bound constrained minimum, modified Newton algorithm, using first derivatives (comprehensive)
Names: e04kdf; nagf_opt_bounds_mod_deriv_comp
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a2
First-order active-set method for box constrained nonlinear optimization with low memory requirements
Names: e04kfc; nag_opt_handle_solve_bounds_foas
Keywords: bounds; box constraints; CG; conjugate gradient; first order method; maximization; minimizing or maximizing a function; nonlinear objective; optimization
GAMS: G4d, G2e2, G2h3b
First-order active-set method for box constrained nonlinear optimization with low memory requirements
Names: e04kff; nagf_opt_handle_solve_bounds_foas
Keywords: bounds; box constraints; CG; conjugate gradient; first order method; maximization; minimizing or maximizing a function; nonlinear objective; optimization
GAMS: G4d, G2e2, G2h3b
Bound constrained minimum, quasi-Newton algorithm, using first derivatives (easy-to-use)
Names: e04kyf; nagf_opt_bounds_quasi_deriv_easy
Keywords: BFGS, Broyden, Fletcher, Goldfarb and Shanno algorithm; finance; minimization, simple bound constraints; NLP; nonlinear programming; quasi-Newton algorithm
GAMS: G2h1a2
Bound constrained minimum, modified Newton algorithm, using first derivatives (easy-to-use)
Names: e04kzf; nagf_opt_bounds_mod_deriv_easy
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a2
Bound constrained minimum, modified Newton algorithm, using first and second derivatives (comprehensive)
Names: e04lbf; nagf_opt_bounds_mod_deriv2_comp
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a3
Bound constrained minimum, modified Newton algorithm, using first and second derivatives (easy-to-use)
Names: e04lyf; nagf_opt_bounds_mod_deriv2_easy
Keywords: finance; minimization, simple bound constraints; Newton algorithm; NLP; nonlinear programming
GAMS: G2h1a3
Linear programming (LP), dense, active-set method
Names: e04mfa; nagf_opt_lp_solve
Keywords: active-set method; finance; LP, linear programming
GAMS: G2a1, G4d
Linear programming (LP), dense, active-set method
Names: e04mff; nagf_opt_lp_solve_old
Keywords: active-set method; finance; LP, linear programming
GAMS: G2a1, G4d
Linear programming (LP), sparse, simplex
Names: e04mkc; nag_opt_handle_solve_lp_simplex
Keywords: linear programming; LP; simplex
GAMS: G2a2, G4d
Linear programming (LP), sparse, simplex
Names: e04mkf; nagf_opt_handle_solve_lp_simplex
Keywords: linear programming; LP; simplex
GAMS: G2a2, G4d
Linear programming (LP), sparse, interior point method (IPM)
Names: e04mtc; nag_opt_handle_solve_lp_ipm
Keywords: interior point method; ipm; linear programming; LP
GAMS: G2a2, G4d
Linear programming (LP), sparse, interior point method (IPM)
Names: e04mtf; nagf_opt_handle_solve_lp_ipm
Keywords: interior point method; ipm; linear programming; LP
GAMS: G2a2, G4d
Read MPS data file defining LP, QP, MILP or MIQP problem
Names: e04mxc; nag_opt_miqp_mps_read
Keywords: linear programming,integer; LP, linear programming; MPSX format; QP, quadratic programming; service routine
GAMS: G4a
Read MPS data file defining LP, QP, MILP or MIQP problem
Names: e04mxf; nagf_opt_miqp_mps_read
Keywords: linear programming,integer; LP, linear programming; MPSX format; QP, quadratic programming; service routine
GAMS: G4a
Linear programming (LP) convex quadratic programming (QP) or linearly-constrained linear least squares problem, dense
Names: e04nca; nagf_opt_lsq_lincon_solve
Keywords: active-set; convex optimization; data fitting; finance; least squares; nonlinear least squares; QP, quadratic programming
GAMS: D9b1, G2a1, G2e1, G4d
Linear programming (LP) convex quadratic programming (QP) or linearly-constrained linear least squares problem, dense
Names: e04ncf; nagf_opt_lsq_lincon_solve_old
Keywords: active-set; convex optimization; data fitting; finance; least squares; nonlinear least squares; QP, quadratic programming
GAMS: D9b1, G2a1, G2e1, G4d
General (possibly non-convex) quadratic programming (QP), dense, active-set method
Names: e04nfa; nagf_opt_qp_dense_solve
Keywords: active-set method; finance; QP, quadratic programming
GAMS: G2a1, G2e1, G2e2, G4d
General (possibly non-convex) quadratic programming (QP), dense, active-set method
Names: e04nff; nagf_opt_qp_dense_solve_old
Keywords: active-set method; finance; QP, quadratic programming
GAMS: G2a1, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method
Names: e04nka; nagf_opt_qpconvex1_sparse_solve
Keywords: finance; LP, linear programming; QP, quadratic programming; service routine
GAMS: G2a2, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method
Names: e04nkf; nagf_opt_qpconvex1_sparse_solve_old
Keywords: finance; LP, linear programming; QP, quadratic programming; service routine
GAMS: G2a2, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method, recommended
Names: e04nqc; nag_opt_sparse_convex_qp_solve
Keywords: active-set method; finance; LP, linear programming; QP, quadratic programming; service routine; sparse convex QP prolem
GAMS: G2a2, G2e1, G2e2, G4d
Linear programming (LP) or convex quadratic programming (QP), sparse, active-set method, recommended
Names: e04nqf; nagf_opt_qpconvex2_sparse_solve
Keywords: active-set method; finance; LP, linear programming; QP, quadratic programming; service routine; sparse convex QP prolem
GAMS: G2a2, G2e1, G2e2, G4d
Computes the least squares solution to a set of linear equations subject to fixed upper and lower bounds on the variables. An option is provided to return a minimal length solution if a solution is not unique
Names: e04pcc; nag_opt_bnd_lin_lsq
Keywords: BVLS, bounded variable least squares; data fitting; finance; NNLS, non-negative least squares; nonlinear least squares; non-negative least squares
GAMS: K1a2
Computes the least squares solution to a set of linear equations subject to fixed upper and lower bounds on the variables. An option is provided to return a minimal length solution if a solution is not unique
Names: e04pcf; nagf_opt_bnd_lin_lsq
Keywords: BVLS, bounded variable least squares; data fitting; finance; NNLS, non-negative least squares; nonlinear least squares; non-negative least squares
GAMS: K1a2
Solve Second-order Cone Programming (SOCP) and other convex related problems, such as, quadratically constrained quadratic programming (QCQP), quadratic programming (QP), sparse, interior point method (IPM)
Names: e04ptc; nag_opt_handle_solve_socp_ipm
Keywords: conic; interior point method; ipm; minimizing or maximizing a function; optimization; quadratic cone; rotated quadratic cone; second-order cone programming; SOCP
GAMS: G2
Solve Second-order Cone Programming (SOCP) and other convex related problems, such as, quadratically constrained quadratic programming (QCQP), quadratic programming (QP), sparse, interior point method (IPM)
Names: e04ptf; nagf_opt_handle_solve_socp_ipm
Keywords: conic; interior point method; ipm; minimizing or maximizing a function; optimization; quadratic cone; rotated quadratic cone; second-order cone programming; SOCP
GAMS: G2
Set a property for a set of variables, such as integrality
Names: e04rcc; nag_opt_handle_set_property
Keywords: binary variable; integer variable; mixed integer
GAMS: G4f
Set a property for a set of variables, such as integrality
Names: e04rcf; nagf_opt_handle_set_property
Keywords: binary variable; integer variable; mixed integer
GAMS: G4f
Retrieve or write a piece of integer information in a problem handle initialized by e04rac
Names: e04rwc; nag_opt_handle_set_get_integer
Keywords: get information; set information
GAMS: G4f
Retrieve or write a piece of integer information in a problem handle initialized by e04raf
Names: e04rwf; nagf_opt_handle_set_get_integer
Keywords: get information; set information
GAMS: G4f
Retrieve or write a piece of real information in a problem handle initialized by e04rac
Names: e04rxc; nag_opt_handle_set_get_real
Keywords: get information; set information
GAMS: G4f
Retrieve or write a piece of real information in a problem handle initialized by e04raf
Names: e04rxf; nagf_opt_handle_set_get_real
Keywords: get information; set information
GAMS: G4f
Load a problem from a file to a new handle for the NAG optimization modelling suite; supported formats: extended MPS, SDPA
Names: e04sac; nag_opt_handle_read_file
Keywords: conic; file input; linear matrix inequality; linear programming; LMI; LP, linear programming; matrix constraints; MPSX format; QP, quadratic programming; SDP; SDPA format; second-order cone programming; semidefinite programming; service routine; SOCP
GAMS: G4a
Load a problem from a file to a new handle for the NAG optimization modelling suite; supported formats: extended MPS, SDPA
Names: e04saf; nagf_opt_handle_read_file
Keywords: conic; file input; linear matrix inequality; linear programming; LMI; LP, linear programming; matrix constraints; MPSX format; QP, quadratic programming; SDP; SDPA format; second-order cone programming; semidefinite programming; service routine; SOCP
GAMS: G4a
Active-set sequential quadratic programming (SQP) method for sparse nonlinear programming (NLP) problems
Names: e04src; nag_opt_handle_solve_ssqp
Keywords: maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization; sequential quadratic programming; SQP
GAMS: G4d, G2e2, G2h3b
Active-set sequential quadratic programming (SQP) method for sparse nonlinear programming (NLP) problems
Names: e04srf; nagf_opt_handle_solve_ssqp
Keywords: maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization; sequential quadratic programming; SQP
GAMS: G4d, G2e2, G2h3b
Interior point method (IPM) for sparse nonlinear programming (NLP) problems
Names: e04stc; nag_opt_handle_solve_ipopt
Keywords: interior point method; IPM; IPOPT; least squares fitting; maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization
GAMS: G4d, G2e2, G2h3b
Interior point method (IPM) for sparse nonlinear programming (NLP) problems
Names: e04stf; nag_opt_handle_solve_ipopt
Keywords: interior point method; IPM; IPOPT; least squares fitting; maximization; minimizing or maximizing a function; NLP; nonlinear programming; optimization
GAMS: G4d, G2e2, G2h3b
Solver for semidefinite programming (SDP) problems and SDP with bilinear matrix inequalities (BMI)
Names: e04svc; nag_opt_handle_solve_pennon
Keywords: bilinear matrix inequality; BMI; generalized augmented Lagrangian method; Lagrangian; least squares fitting; linear matrix inequality; LMI; matrix constraints; maximization; minimizing or maximizing a function; monitoring information; optimization; SDP; semidefinite programming
GAMS: G4d, G2h3b
Solver for semidefinite programming (SDP) problems and SDP with bilinear matrix inequalities (BMI)
Names: e04svf; nagf_opt_handle_solve_pennon
Keywords: bilinear matrix inequality; BMI; generalized augmented Lagrangian method; Lagrangian; least squares fitting; linear matrix inequality; LMI; matrix constraints; maximization; minimizing or maximizing a function; monitoring information; optimization; SDP; semidefinite programming
GAMS: G4d, G2h3b
Enable components of the model which were previously disabled by e04tcc
Names: e04tbc; nag_opt_handle_enable
Keywords: enable component; least squares fitting; maximization; minimizing or maximizing a function; optimization
GAMS: G4f
Enable components of the model which were previously disabled by e04tcf
Names: e04tbf; nagf_opt_handle_enable
Keywords: enable component; least squares fitting; maximization; minimizing or maximizing a function; optimization
GAMS: G4f
Disable components in the problem initialized by e04rac
Names: e04tcc; nag_opt_handle_disable
Keywords: delete component; disable component; least squares fitting; maximization; minimizing or maximizing a function; optimization; remove component
GAMS: G4f
Disable components in the problem initialized by e04raf
Names: e04tcf; nagf_opt_handle_disable
Keywords: delete component; disable component; least squares fitting; maximization; minimizing or maximizing a function; optimization; remove component
GAMS: G4f
Nonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04uca; nagf_opt_nlp1_solve
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04ucf; nagf_opt_nlp1_solve_old
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set, SQP method, using function values and optionally first derivatives (reverse communication, comprehensive)
Names: e04ufc; nag_opt_nlp_revcomm
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set, SQP method, using function values and optionally first derivatives (reverse communication, comprehensive)
Names: e04ufa; nagf_opt_nlp1_rcomm
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set, SQP method, using function values and optionally first derivatives (reverse communication, comprehensive)
Names: e04uff; nagf_opt_nlp1_rcomm_old
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives
Names: e04uga; nagf_opt_nlp1_sparse_solve
Keywords: finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives
Names: e04ugf; nagf_opt_nlp1_sparse_solve_old
Keywords: finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Minimum of a sum of squares, nonlinear constraints, dense, active-set SQP method, using function values and optionally first derivatives
Names: e04usa; nagf_opt_lsq_gencon_deriv
Keywords: data fitting; finance; minimization, nonlinear constraints; NLP; nonlinear least squares; nonlinear programming; quasi-Newton approximation; sequential QP method; sum of squares
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3b1a, G2h3a1, G2h3b1b, G4d, K1b2b, L8e1b2
Minimum of a sum of squares, nonlinear constraints, dense, active-set SQP method, using function values and optionally first derivatives
Names: e04usf; nagf_opt_lsq_gencon_deriv_old
Keywords: data fitting; finance; minimization, nonlinear constraints; NLP; nonlinear least squares; nonlinear programming; quasi-Newton approximation; sequential QP method; sum of squares
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3b1a, G2h3a1, G2h3b1b, G4d, K1b2b, L8e1b2
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04vhc; nag_opt_sparse_nlp_solve
Keywords: finance; LP, linear programming; minimization, nonlinear constraints; NLP; nonlinear programming; quasi-Newton algorithm; sequential QP method; simplex algorithm; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Nonlinear programming (NLP), sparse, active-set SQP method, using function values and optionally first derivatives, recommended
Names: e04vhf; nagf_opt_nlp2_sparse_solve
Keywords: finance; LP, linear programming; minimization, nonlinear constraints; NLP; nonlinear programming; quasi-Newton algorithm; sequential QP method; simplex algorithm; SQP
GAMS: G2a2, G2e1, G2e2, G4d
Determine the pattern of nonzeros in the Jacobian matrix for e04vhc
Names: e04vjc; nag_opt_sparse_nlp_jacobian
Keywords: finance; minimization, nonlinear constraints; sparsity structure; SQP
GAMS: G4f
Determine the pattern of nonzeros in the Jacobian matrix for e04vhf
Names: e04vjf; nagf_opt_nlp2_sparse_jacobian
Keywords: finance; minimization, nonlinear constraints; sparsity structure; SQP
GAMS: G4f
Nonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives
Names: e04wdc; nag_opt_nlp_solve
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Nonlinear programming (NLP), dense, active-set SQP method, using function values and optionally first derivatives
Names: e04wdf; nagf_opt_nlp2_solve
Keywords: dense; finance; minimization, nonlinear constraints; NLP; nonlinear programming; sequential QP method; SQP
GAMS: G2h1a1, G2h1a2, G2h2a1, G2h2a2, G2h3a1, G2h3b1a, G2h3b1b, G4d
Check user's routine for calculating Jacobian of first derivatives
Names: e04yaf; nagf_opt_lsq_check_deriv
Keywords: finance; Jacobian estimation; service routine
GAMS: G4c
Check user's routine for calculating Hessian of a sum of squares
Names: e04ybf; nagf_opt_lsq_check_hessian
Keywords: finance; Hessian estimation; service routine
GAMS: G4c
Covariance matrix for nonlinear least squares problem (unconstrained)
Names: e04ycf; nagf_opt_lsq_uncon_covariance
Keywords: covariance matrix; nonlinear least squares; service routine
GAMS: L8e1b
Initialization routine for e05jbc
Names: e05jac; nag_glopt_bnd_mcs_init
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Initialization routine for e05jbf
Names: e05jaf; nagf_glopt_bnd_mcs_init
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Global optimization by multi-level coordinate search, simple bounds, using function values only
Names: e05jbc; nag_glopt_bnd_mcs_solve
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Global optimization by multi-level coordinate search, simple bounds, using function values only
Names: e05jbf; nagf_glopt_bnd_mcs_solve
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Supply optional parameter values for e05jbc from external file
Names: e05jcc; nag_glopt_bnd_mcs_optset_file
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Supply optional parameter values for e05jbf from external file
Names: e05jcf; nagf_glopt_bnd_mcs_optset_file
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbc from a character string
Names: e05jdc; nag_glopt_bnd_mcs_optset_string
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbf from a character string
Names: e05jdf; nagf_glopt_bnd_mcs_optset_string
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbc from an ‘ON’/‘OFF’-valued character argument
Names: e05jec; nag_glopt_bnd_mcs_optset_char
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbf from an ‘ON’/‘OFF’-valued character argument
Names: e05jef; nagf_glopt_bnd_mcs_optset_char
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbc from an integer argument
Names: e05jfc; nag_glopt_bnd_mcs_optset_int
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbf from an integer argument
Names: e05jff; nagf_glopt_bnd_mcs_optset_int
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbc from a real argument
Names: e05jgc; nag_glopt_bnd_mcs_optset_real
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Set a single optional parameter for e05jbf from a real argument
Names: e05jgf; nagf_glopt_bnd_mcs_optset_real
Keywords: minimization, simple bound constraints; options, computational
GAMS: G4f
Bound-constrained global optimization by multi-level coordinate search, using function values only
Names: e05kbc; nag_glopt_handle_solve_mcs
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Bound-constrained global optimization by multi-level coordinate search, using function values only
Names: e05kbf; nagf_glopt_handle_solve_mcs
Keywords: finance; minimization, simple bound constraints; multi-level coordinate search; options, computational
GAMS: G2i
Global optimization using particle swarm algorithm (PSO), bound constraints only
Names: e05sac; nag_glopt_bnd_pso
Keywords: minimization, simple bound constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G1b2
Global optimization using particle swarm algorithm (PSO), bound constraints only
Names: e05saf; nagf_glopt_bnd_pso
Keywords: minimization, simple bound constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G1b2
Global optimization using particle swarm algorithm (PSO), comprehensive
Names: e05sbc; nag_glopt_nlp_pso
Keywords: minimization, nonlinear constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G2h3b2
Global optimization using particle swarm algorithm (PSO), comprehensive
Names: e05sbf; nagf_glopt_nlp_pso
Keywords: minimization, nonlinear constraints; particle swarm algorithm; PSO, particle swarm algorithm
GAMS: G2h3b2
Global optimization using multi-start, nonlinear constraints
Names: e05ucc; nag_glopt_nlp_multistart_sqp
Keywords: finance; minimization, nonlinear constraints; multi-start algorithm; sequential QP method
GAMS: G2i
Global optimization using multi-start, nonlinear constraints
Names: e05ucf; nagf_glopt_nlp_multistart_sqp
Keywords: finance; minimization, nonlinear constraints; multi-start algorithm; sequential QP method
GAMS: G2i
Global optimization of a sum of squares problem using multi-start, nonlinear constraints
Names: e05usc; nag_glopt_nlp_multistart_sqp_lsq
Keywords: finance; multi-start algorithm; sequential QP method; sum of squares
GAMS: G2i
Global optimization of a sum of squares problem using multi-start, nonlinear constraints
Names: e05usf; nagf_glopt_nlp_multistart_sqp_lsq
Keywords: finance; multi-start algorithm; sequential QP method; sum of squares
GAMS: G2i
Option setting routine for e05sac, e05sbc, e05ucc and e05usc
Names: e05zkc; nag_glopt_opt_set
Keywords: options, computational
GAMS: G4f
Option setting routine for e05saf, e05sbf, e05ucf and e05usf
Names: e05zkf; nagf_glopt_optset
Keywords: options, computational
GAMS: G4f
Inverse of real symmetric positive definite matrix using iterative refinement
Names: f01abf; nagf_matop_real_symm_posdef_inv
Keywords: inverse, matrix; matrix inverse; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix
Names: f01adf; nagf_matop_real_symm_posdef_inv_noref
Keywords: inverse, matrix; matrix inverse; real, positive definite, symmetric matrix
GAMS: D2b1b
Multiplication of real matrices
Names: f01ckf; nagf_matop_real_gen_matmul
Keywords: multiply, matrix; real, nonsymmetric matrix
GAMS: D1b6
Sum or difference of two real matrices, optional scaling and transposition
Names: f01ctf; nagf_matop_real_addsub
Keywords: real, nonsymmetric matrix; sum, matrix; transpose, matrix
GAMS: D1b3, D1b5
Sum or difference of two complex matrices, optional scaling and transposition
Names: f01cwf; nagf_matop_complex_addsub
Keywords: complex, nonsymmetric matrix; sum, matrix; transpose, matrix
GAMS: D1b3, D1b5
Matrix-matrix product, two real triangular matrices, update third matrix
Names: f01dfc; nag_matop_real_tri_matmul
Keywords: multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, two real triangular matrices, update third matrix
Names: f01dff; nagf_matop_real_tri_matmul
Keywords: multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, two real lower or upper triangular matrices
Names: f01dgc; nag_matop_real_tri_matmul_inplace
Keywords: multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Matrix-matrix product, two real lower or upper triangular matrices
Names: f01dgf; nagf_matop_real_tri_matmul_inplace
Keywords: multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Matrix-matrix product, two complex triangular matrices, update third matrix
Names: f01dtc; nag_matop_complex_tri_matmul
Keywords: complex, m×n matrix; multiply, matrix
GAMS: D1b6
Matrix-matrix product, two complex triangular matrices, update third matrix
Names: f01dtf; nagf_matop_complex_tri_matmul
Keywords: complex, m×n matrix; multiply, matrix
GAMS: D1b6
Matrix-matrix product, two complex lower or upper triangular matrices
Names: f01duc; nag_matop_complex_tri_matmul_inplace
Keywords: complex, m×n matrix; complex, triangular matrix; multiply, matrix
GAMS: D1b6
Matrix-matrix product, two complex lower or upper triangular matrices
Names: f01duf; nagf_matop_complex_tri_matmul_inplace
Keywords: complex, m×n matrix; complex, triangular matrix; multiply, matrix
GAMS: D1b6
Real matrix exponential
Names: f01ecc; nag_real_gen_matrix_exp
Keywords: exponential, matrix; matrix exponential; real, nonsymmetric matrix
GAMS: D8
Real matrix exponential
Names: f01ecf; nagf_matop_real_gen_matrix_exp
Keywords: exponential, matrix; matrix exponential; real, nonsymmetric matrix
GAMS: D8
Real symmetric matrix exponential
Names: f01edc; nag_real_symm_matrix_exp
Keywords: exponential, matrix; finance; matrix exponential; real, indefinite, symmetric matrix
GAMS: D8
Real symmetric matrix exponential
Names: f01edf; nagf_matop_real_symm_matrix_exp
Keywords: exponential, matrix; finance; matrix exponential; real, indefinite, symmetric matrix
GAMS: D8
Function of a real symmetric matrix
Names: f01efc; nag_matop_real_symm_matrix_fun
Keywords: finance; functions, matrix; matrix functions; real, indefinite, symmetric matrix
GAMS: D8
Function of a real symmetric matrix
Names: f01eff; nagf_matop_real_symm_matrix_fun
Keywords: finance; functions, matrix; matrix functions; real, indefinite, symmetric matrix
GAMS: D8
Real matrix logarithm
Names: f01ejc; nag_matop_real_gen_matrix_log
Keywords: logarithm, matrix; matrix logarithm; real, nonsymmetric matrix
GAMS: D8
Real matrix logarithm
Names: f01ejf; nagf_matop_real_gen_matrix_log
Keywords: logarithm, matrix; matrix logarithm; real, nonsymmetric matrix
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a real matrix (Schur–Parlett algorithm)
Names: f01ekc; nag_matop_real_gen_matrix_fun_std
Keywords: cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a real matrix (Schur–Parlett algorithm)
Names: f01ekf; nagf_matop_real_gen_matrix_fun_std
Keywords: cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Function of a real matrix (using numerical differentiation)
Names: f01elc; nag_matop_real_gen_matrix_fun_num
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Function of a real matrix (using numerical differentiation)
Names: f01elf; nagf_matop_real_gen_matrix_fun_num
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Function of a real matrix (using user-supplied derivatives)
Names: f01emc; nag_matop_real_gen_matrix_fun_usd
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Function of a real matrix (using user-supplied derivatives)
Names: f01emf; nagf_matop_real_gen_matrix_fun_usd
Keywords: functions, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Real matrix square root
Names: f01enc; nag_matop_real_gen_matrix_sqrt
Keywords: real, nonsymmetric matrix
GAMS: D8
Real matrix square root
Names: f01enf; nagf_matop_real_gen_matrix_sqrt
Keywords: real, nonsymmetric matrix
GAMS: D8
Real upper quasi-triangular matrix square root
Names: f01epc; nag_matop_real_tri_matrix_sqrt
Keywords: real, quasi-triangular matrix
GAMS: D8
Real upper quasi-triangular matrix square root
Names: f01epf; nagf_matop_real_tri_matrix_sqrt
Keywords: real, quasi-triangular matrix
GAMS: D8
General power of a real matrix
Names: f01eqc; nag_matop_real_gen_matrix_pow
Keywords: general power; matrix operations including inversion
GAMS: D8
General power of a real matrix
Names: f01eqf; nagf_matop_real_gen_matrix_pow
Keywords: general power; matrix operations including inversion
GAMS: D8
Complex matrix exponential
Names: f01fcc; nag_matop_complex_gen_matrix_exp
Keywords: complex, nonsymmetric matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Complex matrix exponential
Names: f01fcf; nagf_matop_complex_gen_matrix_exp
Keywords: complex, nonsymmetric matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Complex Hermitian matrix exponential
Names: f01fdc; nag_matop_complex_herm_matrix_exp
Keywords: complex, Hermitian, indefinite matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Complex Hermitian matrix exponential
Names: f01fdf; nagf_matop_complex_herm_matrix_exp
Keywords: complex, Hermitian, indefinite matrix; exponential, matrix; finance; matrix exponential
GAMS: D8
Function of a complex Hermitian matrix
Names: f01ffc; nag_matop_complex_herm_matrix_fun
Keywords: complex, Hermitian, indefinite matrix; finance; functions, matrix; matrix functions
GAMS: D8
Function of a complex Hermitian matrix
Names: f01fff; nagf_matop_complex_herm_matrix_fun
Keywords: complex, Hermitian, indefinite matrix; finance; functions, matrix; matrix functions
GAMS: D8
Complex matrix logarithm
Names: f01fjc; nag_matop_complex_gen_matrix_log
Keywords: complex, nonsymmetric matrix; logarithm, matrix; matrix logarithm
GAMS: D8
Complex matrix logarithm
Names: f01fjf; nagf_matop_complex_gen_matrix_log
Keywords: complex, nonsymmetric matrix; logarithm, matrix; matrix logarithm
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a complex matrix (Schur–Parlett algorithm)
Names: f01fkc; nag_matop_complex_gen_matrix_fun_std
Keywords: complex, nonsymmetric matrix; cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; sine, matrix; sinh, matrix
GAMS: D8
Exponential, sine, cosine, sinh or cosh of a complex matrix (Schur–Parlett algorithm)
Names: f01fkf; nagf_matop_complex_gen_matrix_fun_std
Keywords: complex, nonsymmetric matrix; cosh, matrix; cosine, matrix; exponential, matrix; functions, matrix; sine, matrix; sinh, matrix
GAMS: D8
Function of a complex matrix (using numerical differentiation)
Names: f01flc; nag_matop_complex_gen_matrix_fun_num
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Function of a complex matrix (using numerical differentiation)
Names: f01flf; nagf_matop_complex_gen_matrix_fun_num
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Function of a complex matrix (using user-supplied derivatives)
Names: f01fmc; nag_matop_complex_gen_matrix_fun_usd
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Function of a complex matrix (using user-supplied derivatives)
Names: f01fmf; nagf_matop_complex_gen_matrix_fun_usd
Keywords: complex, nonsymmetric matrix; functions, matrix; matrix functions
GAMS: D8
Complex matrix square root
Names: f01fnc; nag_matop_complex_gen_matrix_sqrt
Keywords: complex, nonsymmetric matrix
GAMS: D8
Complex matrix square root
Names: f01fnf; nagf_matop_complex_gen_matrix_sqrt
Keywords: complex, nonsymmetric matrix
GAMS: D8
Complex upper triangular matrix square root
Names: f01fpc; nag_matop_complex_tri_matrix_sqrt
Keywords: complex, triangular matrix
GAMS: D8
Complex upper triangular matrix square root
Names: f01fpf; nagf_matop_complex_tri_matrix_sqrt
Keywords: complex, triangular matrix
GAMS: D8
General power of a complex matrix
Names: f01fqc; nag_matop_complex_gen_matrix_pow
Keywords: eigenvalues and eigenvectors; general power; matrix operations including inversion
GAMS: D8
General power of a complex matrix
Names: f01fqf; nagf_matop_complex_gen_matrix_pow
Keywords: eigenvalues and eigenvectors; general power; matrix operations including inversion
GAMS: D8
Action of a real matrix exponential on a real matrix
Names: f01gac; nag_matop_real_gen_matrix_actexp
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a real matrix exponential on a real matrix
Names: f01gaf; nagf_matop_real_gen_matrix_actexp
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a real matrix exponential on a real matrix (reverse communication)
Names: f01gbc; nag_matop_real_gen_matrix_actexp_rcomm
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a real matrix exponential on a real matrix (reverse communication)
Names: f01gbf; nagf_matop_real_gen_matrix_actexp_rcomm
Keywords: exponential, matrix; matrix exponential; product, matrices; real, nonsymmetric matrix
GAMS: D8
Action of a complex matrix exponential on a complex matrix
Names: f01hac; nag_matop_complex_gen_matrix_actexp
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Action of a complex matrix exponential on a complex matrix
Names: f01haf; nagf_matop_complex_gen_matrix_actexp
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Action of a complex matrix exponential on a complex matrix (reverse communication)
Names: f01hbc; nag_matop_complex_gen_matrix_actexp_rcomm
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Action of a complex matrix exponential on a complex matrix (reverse communication)
Names: f01hbf; nagf_matop_complex_gen_matrix_actexp_rcomm
Keywords: complex, nonsymmetric matrix; exponential, matrix; matrix exponential; product, matrices
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a real matrix
Names: f01jac; nag_matop_real_gen_matrix_cond_std
Keywords: condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a real matrix
Names: f01jaf; nagf_matop_real_gen_matrix_cond_std
Keywords: condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; real, nonsymmetric matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for a function of a real matrix (using numerical differentiation)
Names: f01jbc; nag_matop_real_gen_matrix_cond_num
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for a function of a real matrix (using numerical differentiation)
Names: f01jbf; nagf_matop_real_gen_matrix_cond_num
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for a function of a real matrix (using user-supplied derivatives)
Names: f01jcc; nag_matop_real_gen_matrix_cond_usd
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for a function of a real matrix (using user-supplied derivatives)
Names: f01jcf; nagf_matop_real_gen_matrix_cond_usd
Keywords: condition number, matrix; matrix functions; real, nonsymmetric matrix
GAMS: D8
Condition number for square root of real matrix
Names: f01jdc; nag_matop_real_gen_matrix_cond_sqrt
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for square root of real matrix
Names: f01jdf; nagf_matop_real_gen_matrix_cond_sqrt
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix power
Names: f01jec; nag_matop_real_gen_matrix_cond_pow
Keywords: condition number; matrix operations including inversion
GAMS: D8
Condition number for real matrix power
Names: f01jef; nagf_matop_real_gen_matrix_cond_pow
Keywords: condition number; matrix operations including inversion
GAMS: D8
Fréchet derivative of real matrix power
Names: f01jfc; nag_matop_real_gen_matrix_frcht_pow
Keywords: Fréchet derivative; matrix operations including inversion
GAMS: D8
Fréchet derivative of real matrix power
Names: f01jff; nagf_matop_real_gen_matrix_frcht_pow
Keywords: Fréchet derivative; matrix operations including inversion
GAMS: D8
Condition number for real matrix exponential
Names: f01jgc; nag_matop_real_gen_matrix_cond_exp
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix exponential
Names: f01jgf; nagf_matop_real_gen_matrix_cond_exp
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix exponential
Names: f01jhc; nag_matop_real_gen_matrix_frcht_exp
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix exponential
Names: f01jhf; nagf_matop_real_gen_matrix_frcht_exp
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix logarithm
Names: f01jjc; nag_matop_real_gen_matrix_cond_log
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Condition number for real matrix logarithm
Names: f01jjf; nagf_matop_real_gen_matrix_cond_log
Keywords: condition number; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix logarithm
Names: f01jkc; nag_matop_real_gen_matrix_frcht_log
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Fréchet derivative of real matrix logarithm
Names: f01jkf; nagf_matop_real_gen_matrix_frcht_log
Keywords: Fréchet derivative; real, nonsymmetric matrix
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a complex matrix
Names: f01kac; nag_matop_complex_gen_matrix_cond_std
Keywords: complex, nonsymmetric matrix; condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for the exponential, logarithm, sine, cosine, sinh or cosh of a complex matrix
Names: f01kaf; nagf_matop_complex_gen_matrix_cond_std
Keywords: complex, nonsymmetric matrix; condition number, matrix; cosh, matrix; cosine, matrix; exponential, matrix; logarithm, matrix; sine, matrix; sinh, matrix
GAMS: D8
Condition number for a function of a complex matrix (using numerical differentiation)
Names: f01kbc; nag_matop_complex_gen_matrix_cond_num
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for a function of a complex matrix (using numerical differentiation)
Names: f01kbf; nagf_matop_complex_gen_matrix_cond_num
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for a function of a complex matrix (using user-supplied derivatives)
Names: f01kcc; nag_matop_complex_gen_matrix_cond_usd
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for a function of a complex matrix (using user-supplied derivatives)
Names: f01kcf; nagf_matop_complex_gen_matrix_cond_usd
Keywords: complex, nonsymmetric matrix; condition number, matrix; matrix functions
GAMS: D8
Condition number for square root of complex matrix
Names: f01kdc; nag_matop_complex_gen_matrix_cond_sqrt
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for square root of complex matrix
Names: f01kdf; nagf_matop_complex_gen_matrix_cond_sqrt
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for complex matrix power
Names: f01kec; nag_matop_complex_gen_matrix_cond_pow
Keywords: condition number; eigenvalues and eigenvectors; matrix operations including inversion
GAMS: D8
Condition number for complex matrix power
Names: f01kef; nagf_matop_complex_gen_matrix_cond_pow
Keywords: condition number; eigenvalues and eigenvectors; matrix operations including inversion
GAMS: D8
Fréchet derivative of complex matrix power
Names: f01kfc; nag_matop_complex_gen_matrix_frcht_pow
Keywords: eigenvalues and eigenvectors; Fréchet derivative; matrix operations including inversion
GAMS: D8
Fréchet derivative of complex matrix power
Names: f01kff; nagf_matop_complex_gen_matrix_frcht_pow
Keywords: eigenvalues and eigenvectors; Fréchet derivative; matrix operations including inversion
GAMS: D8
Condition number for complex matrix exponential
Names: f01kgc; nag_matop_complex_gen_matrix_cond_exp
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for complex matrix exponential
Names: f01kgf; nagf_matop_complex_gen_matrix_cond_exp
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Fréchet derivative of complex matrix exponential
Names: f01khc; nag_matop_complex_gen_matrix_frcht_exp
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
Fréchet derivative of complex matrix exponential
Names: f01khf; nagf_matop_complex_gen_matrix_frcht_exp
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
Condition number for complex matrix logarithm
Names: f01kjc; nag_matop_complex_gen_matrix_cond_log
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Condition number for complex matrix logarithm
Names: f01kjf; nagf_matop_complex_gen_matrix_cond_log
Keywords: complex, nonsymmetric matrix; condition number
GAMS: D8
Fréchet derivative of complex matrix logarithm
Names: f01kkc; nag_matop_complex_gen_matrix_frcht_log
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
Fréchet derivative of complex matrix logarithm
Names: f01kkf; nagf_matop_complex_gen_matrix_frcht_log
Keywords: complex, nonsymmetric matrix; Fréchet derivative
GAMS: D8
LU factorization of real tridiagonal matrix
Names: f01lef; nagf_matop_real_gen_tridiag_lu
Keywords: complex, nonsymmetric matrix; LU decomposition; matrix, band
GAMS: D2a2a
LU factorization of real almost block diagonal matrix
Names: f01lhf; nagf_matop_real_gen_blkdiag_lu
Keywords: LU decomposition; real, almost block-diagonal matrix
GAMS: D2a2
Computes the modified Cholesky factorization of a real symmetric matrix
Names: f01mdc; nag_matop_real_modified_cholesky
Keywords: Cheng–Higham factorization; modified Cholesky; real, symmetric matrix
GAMS: D2b1a
Computes the modified Cholesky factorization of a real symmetric matrix
Names: f01mdf; nagf_matop_real_modified_cholesky
Keywords: Cheng–Higham factorization; modified Cholesky; real, symmetric matrix
GAMS: D2b1a
Computes the positive definite perturbed matrix A+E from the factors of a modified Cholesky factorization of a real symmetric matrix
Names: f01mec; nag_matop_real_mod_chol_perturbed_a
Keywords: positive definite perturbed matrix; real, symmetric matrix
GAMS: D2b1a
Computes the positive definite perturbed matrix A+E from the factors of a modified Cholesky factorization of a real symmetric matrix
Names: f01mef; nagf_matop_real_mod_chol_perturbed_a
Keywords: positive definite perturbed matrix; real, symmetric matrix
GAMS: D2b1a
RQ factorization of real m×n upper trapezoidal matrix (mn)
Names: f01qgf; nagf_matop_real_trapez_rq
Keywords: real, trapezoidal matrix; RQ factorizations
GAMS: D5
RQ factorization of real m×n matrix (mn)
Names: f01qjf; nagf_matop_real_gen_rq
Keywords: real, m×n matrix; RQ factorizations
GAMS: D5
Operations with orthogonal matrices, form rows of Q, after RQ factorization by f01qjf
Names: f01qkf; nagf_matop_real_gen_rq_formq
Keywords: RQ factorizations
GAMS: D5
RQ factorization of complex m×n upper trapezoidal matrix (mn)
Names: f01rgf; nagf_matop_complex_trapez_rq
Keywords: complex, trapezoidal matrix; RQ factorizations
GAMS: D5
RQ factorization of complex m×n matrix (mn)
Names: f01rjf; nagf_matop_complex_gen_rq
Keywords: complex, m×n matrix; RQ factorizations
GAMS: D5
Operations with unitary matrices, form rows of Q, after RQ factorization by f01rjf
Names: f01rkf; nagf_matop_complex_gen_rq_formq
Keywords: RQ factorizations
GAMS: D5
Non-negative matrix factorization of real non-negative matrix
Names: f01sac; nag_matop_real_nmf
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Non-negative matrix factorization of real non-negative matrix
Names: f01saf; nagf_matop_real_nmf
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Non-negative matrix factorization of real non-negative matrix (reverse communication)
Names: f01sbc; nag_matop_real_nmf_rcomm
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Non-negative matrix factorization of real non-negative matrix (reverse communication)
Names: f01sbf; nagf_matop_real_nmf_rcomm
Keywords: non-negative matrix factorization; real, non-negative matrix
GAMS: D8
Computes selected eigenvalues and eigenvectors of a real general matrix
Names: f02ecc; nag_real_eigensystem_sel
Keywords: real, nonsymmetric matrix
GAMS: D4a2
Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black Box)
Names: f02ecf; nagf_eigen_real_gen_eigsys
Keywords: real, nonsymmetric matrix
GAMS: D4a2
Selected eigenvalues and eigenvectors of a real sparse general matrix
Names: f02ekc; nag_eigen_real_gen_sparse_arnoldi
Keywords: large scale eigenproblems; matrix, sparse; real, sparse matrix
GAMS: D4a7, D4a2
Selected eigenvalues and eigenvectors of a real sparse general matrix
Names: f02ekf; nagf_eigen_real_gen_sparse_arnoldi
Keywords: large scale eigenproblems; matrix, sparse; real, sparse matrix
GAMS: D4a7, D4a2
Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
Names: f02fjf; nagf_eigen_real_symm_sparse_eigsys
Keywords: matrix, sparse; real, sparse, symmetric matrix
GAMS: D4a7, D4b1
Selected eigenvalues and eigenvectors of a real symmetric sparse matrix
Names: f02fkc; nag_eigen_real_symm_sparse_arnoldi
Keywords: eigenproblem; eigenvalues; eigenvectors; large scale eigenproblems; matrix, sparse; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7, D4a1
Selected eigenvalues and eigenvectors of a real symmetric sparse matrix
Names: f02fkf; nagf_eigen_real_symm_sparse_arnoldi
Keywords: eigenproblem; eigenvalues; eigenvectors; large scale eigenproblems; matrix, sparse; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7, D4a1
Computes selected eigenvalues and eigenvectors of a complex general matrix
Names: f02gcc; nag_complex_eigensystem_sel
Keywords: complex, nonsymmetric matrix
GAMS: D4a4
Selected eigenvalues and eigenvectors of complex nonsymmetric matrix (Black Box)
Names: f02gcf; nagf_eigen_complex_gen_eigsys
Keywords: complex, nonsymmetric matrix
GAMS: D4a4
Solves the quadratic eigenvalue problem for real matrices
Names: f02jcc; nag_eigen_real_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b2
Solves the quadratic eigenvalue problem for real matrices
Names: f02jcf; nagf_eigen_real_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b2
Solves the quadratic eigenvalue problem for complex matrices
Names: f02jqc; nag_eigen_complex_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b4
Solves the quadratic eigenvalue problem for complex matrices
Names: f02jqf; nagf_eigen_complex_gen_quad
Keywords: backward error; balancing; condition number; eigenproblem, quadratic; eigenvalues and eigenvectors
GAMS: D4b4
Computes leading terms in the singular value decomposition of a real general matrix; also computes corresponding left and right singular vectors
Names: f02wgc; nag_real_partial_svd
Keywords: real, m×n matrix; SVD, singular value decomposition
GAMS: D6
Computes leading terms in the singular value decomposition of a real general matrix; also computes corresponding left and right singular vectors
Names: f02wgf; nagf_eigen_real_gen_partialsvd
Keywords: real, m×n matrix; SVD, singular value decomposition
GAMS: D6
SVD of real upper triangular matrix (Black Box)
Names: f02wuf; nagf_eigen_real_triang_svd
Keywords: real, triangular matrix; SVD, singular value decomposition
GAMS: D6
SVD of complex upper triangular matrix (Black Box)
Names: f02xuf; nagf_eigen_complex_triang_svd
Keywords: complex, triangular matrix; SVD, singular value decomposition
GAMS: D6
Least squares solution of m real equations in n unknowns, rank =n, mn using iterative refinement (Black Box)
Names: f04amf; nagf_linsys_real_gen_lsqsol
Keywords: linear equations, overdetermined; linear least squares; real, m×n matrix
GAMS: D9a1
Computes the solution, estimated condition number and error-bound to a real system of linear equations
Names: f04bac; nag_real_gen_lin_solve
Keywords: forward error; linear equations; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution, estimated condition number and error-bound to a real system of linear equations
Names: f04baf; nagf_linsys_real_square_solve
Keywords: forward error; linear equations; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution, estimated condition number and error-bound to a real banded system of linear equations
Names: f04bbc; nag_real_band_lin_solve
Keywords: forward error; linear equations; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution, estimated condition number and error-bound to a real banded system of linear equations
Names: f04bbf; nagf_linsys_real_band_solve
Keywords: forward error; linear equations; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution, estimated condition number and error-bound to a real tridiagonal system of linear equations
Names: f04bcc; nag_real_tridiag_lin_solve
Keywords: forward error; linear equations; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Computes the solution, estimated condition number and error-bound to a real tridiagonal system of linear equations
Names: f04bcf; nagf_linsys_real_tridiag_solve
Keywords: forward error; linear equations; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations
Names: f04bdc; nag_real_sym_posdef_lin_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations
Names: f04bdf; nagf_linsys_real_posdef_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations, packed storage
Names: f04bec; nag_real_sym_posdef_packed_lin_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite system of linear equations, packed storage
Names: f04bef; nagf_linsys_real_posdef_packed_solve
Keywords: forward error; linear equations; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite banded system of linear equations
Names: f04bfc; nag_real_sym_posdef_band_lin_solve
Keywords: forward error; linear equations; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite banded system of linear equations
Names: f04bff; nagf_linsys_real_posdef_band_solve
Keywords: forward error; linear equations; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite tridiagonal system of linear equations
Names: f04bgc; nag_real_sym_posdef_tridiag_lin_solve
Keywords: forward error; linear equations; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric positive definite tridiagonal system of linear equations
Names: f04bgf; nagf_linsys_real_posdef_tridiag_solve
Keywords: forward error; linear equations; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations
Names: f04bhc; nag_real_sym_lin_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations
Names: f04bhf; nagf_linsys_real_symm_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations, packed storage
Names: f04bjc; nag_real_sym_packed_lin_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a real symmetric system of linear equations, packed storage
Names: f04bjf; nagf_linsys_real_symm_packed_solve
Keywords: forward error; linear equations; real, indefinite, symmetric matrix
GAMS: D2b1
Computes the solution, estimated condition number and error-bound to a complex system of linear equations
Names: f04cac; nag_complex_gen_lin_solve
Keywords: complex, nonsymmetric matrix; forward error; linear equations
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex system of linear equations
Names: f04caf; nagf_linsys_complex_square_solve
Keywords: complex, nonsymmetric matrix; forward error; linear equations
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex banded system of linear equations
Names: f04cbc; nag_complex_band_lin_solve
Keywords: complex, band matrix; forward error; linear equations; matrix, band
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex banded system of linear equations
Names: f04cbf; nagf_linsys_complex_band_solve
Keywords: complex, band matrix; forward error; linear equations; matrix, band
GAMS: D2c1
Computes the solution, estimated condition number and error-bound to a complex tridiagonal system of linear equations
Names: f04ccc; nag_complex_tridiag_lin_solve
Keywords: complex, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2c2a
Computes the solution, estimated condition number and error-bound to a complex tridiagonal system of linear equations
Names: f04ccf; nagf_linsys_complex_tridiag_solve
Keywords: complex, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2c2a
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations
Names: f04cdc; nag_herm_posdef_lin_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations
Names: f04cdf; nagf_linsys_complex_posdef_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations, packed storage
Names: f04cec; nag_herm_posdef_packed_lin_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite system of linear equations, packed storage
Names: f04cef; nagf_linsys_complex_posdef_packed_solve
Keywords: complex, Hermitian, positive definite matrix; forward error; linear equations
GAMS: D2d1b
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite banded system of linear equations
Names: f04cfc; nag_herm_posdef_band_lin_solve
Keywords: complex, band, Hermitian, positive definite matrix; forward error; linear equations; matrix, band
GAMS: D2d2
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite banded system of linear equations
Names: f04cff; nagf_linsys_complex_posdef_band_solve
Keywords: complex, band, Hermitian, positive definite matrix; forward error; linear equations; matrix, band
GAMS: D2d2
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f04cgc; nag_herm_posdef_tridiag_lin_solve
Keywords: complex, Hermitian, positive definite, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2d2a
Computes the solution, estimated condition number and error-bound to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f04cgf; nagf_linsys_complex_posdef_tridiag_solve
Keywords: complex, Hermitian, positive definite, tridiagonal matrix; forward error; linear equations; matrix, band
GAMS: D2d2a
Computes the solution and error-bound to a complex Hermitian system of linear equations
Names: f04chc; nag_herm_lin_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution and error-bound to a complex Hermitian system of linear equations
Names: f04chf; nagf_linsys_complex_herm_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution, estimated condition number and error-bound to a complex Hermitian system of linear equations, packed storage
Names: f04cjc; nag_herm_packed_lin_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution, estimated condition number and error-bound to a complex Hermitian system of linear equations, packed storage
Names: f04cjf; nagf_linsys_complex_herm_packed_solve
Keywords: complex, Hermitian, indefinite matrix; forward error; linear equations
GAMS: D2d1a
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations
Names: f04dhc; nag_complex_sym_lin_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations
Names: f04dhf; nagf_linsys_complex_symm_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations, packed storage
Names: f04djc; nag_complex_sym_packed_lin_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Computes the solution, estimated condition number and error-bound to a complex symmetric system of linear equations, packed storage
Names: f04djf; nagf_linsys_complex_symm_packed_solve
Keywords: complex, symmetric matrix; forward error; linear equations
GAMS: D2c
Solution of the Yule–Walker equations for real symmetric positive definite Toeplitz matrix, one right-hand side
Names: f04fef; nagf_linsys_real_toeplitz_yule
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix; Yule–Walker equations
GAMS: D2b1b
Solution of real symmetric positive definite Toeplitz system, one right-hand side
Names: f04fff; nagf_linsys_real_toeplitz_solve
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix
GAMS: D2b1b
Least squares (if rank =n) or minimal least squares (if rank <n) solution of m real equations in n unknowns, mn
Names: f04jgf; nagf_linsys_real_gen_solve
Keywords: linear equations, overdetermined; linear least squares; real, m×n matrix
GAMS: D9a1
Solution of real almost block diagonal simultaneous linear equations (coefficient matrix already factorized by f01lhf)
Names: f04lhf; nagf_linsys_real_blkdiag_fac_solve
Keywords: linear equations; real, almost block-diagonal matrix
GAMS: D2a2
Update solution of the Yule–Walker equations for real symmetric positive definite Toeplitz matrix
Names: f04mef; nagf_linsys_real_toeplitz_yule_update
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix; Yule–Walker equations
GAMS: D2b1b
Update solution of real symmetric positive definite Toeplitz system
Names: f04mff; nagf_linsys_real_toeplitz_update
Keywords: real, positive definite, symmetric, Toeplitz matrix; Toeplitz matrix
GAMS: D2b1b
Sparse linear least squares problem, m real equations in n unknowns
Names: f04qaf; nagf_linsys_real_gen_sparse_lsqsol
Keywords: least squares; matrix, sparse; real, m×n matrix; regression; ridge
GAMS: D2a4, D9a1
Covariance matrix for linear least squares problems, m real equations in n unknowns
Names: f04yaf; nagf_linsys_real_gen_lsq_covmat
Keywords: covariance matrix; least squares; real, m×n matrix
GAMS: D9a1
Norm estimation (for use in condition estimation), real rectangular matrix
Names: f04ydc; nag_linsys_real_gen_norm_rcomm
Keywords: 1-norm; norm, matrix; real, m×n matrix
GAMS: D1b2
Norm estimation (for use in condition estimation), real rectangular matrix
Names: f04ydf; nagf_linsys_real_gen_norm_rcomm
Keywords: 1-norm; norm, matrix; real, m×n matrix
GAMS: D1b2
Norm estimation (for use in condition estimation), complex rectangular matrix
Names: f04zdc; nag_linsys_complex_gen_norm_rcomm
Keywords: 1-norm; complex, m×n matrix; norm, matrix
GAMS: D1b2
Norm estimation (for use in condition estimation), complex rectangular matrix
Names: f04zdf; nagf_linsys_complex_gen_norm_rcomm
Keywords: 1-norm; complex, m×n matrix; norm, matrix
GAMS: D1b2
Gram–Schmidt orthogonalization of n vectors of order m
Names: f05aaf; nagf_orthog_real_gram_schmidt
Keywords: Gram–Schmidt orthogonalization
GAMS: D5
Compute cosine of angle between two real vectors
Names: f06faf; nagf_blas_dvcos
Keywords: elementary arithmetic
GAMS: D1a11
Multiply real vector by diagonal matrix
Names: f06fcf; nagf_blas_ddscl
Keywords: elementary arithmetic
GAMS: D1b6
Multiply real vector by reciprocal of scalar
Names: f06fec; nag_drscl
Keywords: elementary arithmetic
GAMS: D1a6
Multiply real vector by reciprocal of scalar
Names: f06fef; nagf_blas_drscl
Keywords: elementary arithmetic
GAMS: D1a6
Generate real elementary reflection, NAG style
Names: f06frf; nagf_blas_dnhousg
Keywords: elementary reflection
GAMS: D1a9
Generate real elementary reflection, LINPACK style
Names: f06fsf; nagf_blas_dlhousg
Keywords: elementary reflection
GAMS: D1a9
Apply real elementary reflection, NAG style
Names: f06ftf; nagf_blas_dnhous
Keywords: elementary reflection
GAMS: D1a9
Apply real elementary reflection, LINPACK style
Names: f06fuf; nagf_blas_dlhous
Keywords: elementary reflection
GAMS: D1a9
Multiply complex vector by complex diagonal matrix
Names: f06hcf; nagf_blas_zdscl
Keywords: elementary arithmetic
GAMS: D1b4
Generate complex elementary reflection
Names: f06hrf; nagf_blas_zhousg
Keywords: elementary reflection
GAMS: D1a9
Apply complex elementary reflection
Names: f06htf; nagf_blas_zhous
Keywords: elementary reflection
GAMS: D1a9
Multiply complex vector by real diagonal matrix
Names: f06kcf; nagf_blas_zddscl
Keywords: elementary arithmetic
GAMS: D1b4
Multiply complex vector by reciprocal of real scalar
Names: f06kec; nag_zrscl
Keywords: elementary arithmetic
GAMS: D1a6
Multiply complex vector by reciprocal of real scalar
Names: f06kef; nagf_blas_zdrscl
Keywords: elementary arithmetic
GAMS: D1a6
QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix
Names: f06qpf; nagf_blas_dutr1
Keywords: QR factorization; rank k matrix updates; real, triangular matrix; rotation, elementary
GAMS: D5
QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix
Names: f06tpf; nagf_blas_zutr1
Keywords: complex, triangular matrix; QR factorization; rank k matrix updates
GAMS: D5
QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix
Names: f06trf; nagf_blas_zuhqr
Keywords: complex, Hessenberg matrix; QR factorization; rotation, elementary; RQ factorizations
GAMS: D5
QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
Names: f06tsf; nagf_blas_zusqr
Keywords: complex, triangular matrix; QR factorization; rotation, elementary; RQ factorizations
GAMS: D5
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format
Names: f06wbf; nagf_blas_dtfsm; dtfsm
Keywords: BLAS; blas, real matrices; dtfsm; linear algebra support routines;; linear equations; real, triangular matrix
GAMS: D2a3
Rank-k update of a real symmetric matrix, Rectangular Full Packed format
Names: f06wcf; nagf_blas_dsfrk; dsfrk
Keywords: blas, real matrices; dsfrk; rank k matrix updates; real, indefinite, symmetric matrix
GAMS: D1b5
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format
Names: f06wpf; nagf_blas_ztfsm; ztfsm
Keywords: BLAS; blas, complex matrices; complex, triangular matrix; linear algebra support routines;; linear equations; ztfsm
GAMS: D2c3
Rank-k update of a complex Hermitian matrix, Rectangular Full Packed format
Names: f06wqf; nagf_blas_zhfrk; zhfrk
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; rank k matrix updates; zherk
GAMS: D1b5
Matrix-matrix product, two real rectangular matrices
Names: f06yaf; nagf_blas_dgemm; dgemm
Keywords: blas, real matrices; dgemm; finance; multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
Names: f06ycf; nagf_blas_dsymm; dsymm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, indefinite, symmetric matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, one real triangular matrix, one real rectangular matrix
Names: f06yff; nagf_blas_dtrmm; dtrmm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
Names: f06yjf; nagf_blas_dtrsm; dtrsm
Keywords: blas, real matrices; finance; linear equations; real, triangular matrix
GAMS: D1b6, D2a3
Rank-k update of a real symmetric matrix
Names: f06ypf; nagf_blas_dsyrk; dsyrk
Keywords: blas, real matrices; dsyrk; real, indefinite, symmetric matrix
GAMS: D1b6, D1b5
Rank-2k update of a real symmetric matrix
Names: f06yrf; nagf_blas_dsyr2k; dsyr2k
Keywords: blas, real matrices; dsyr2k; rank k matrix updates; real, indefinite, symmetric matrix
GAMS: D1b6
Matrix-matrix product, two complex rectangular matrices
Names: f06zaf; nagf_blas_zgemm; zgemm
Keywords: blas, complex matrices; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
Names: f06zcf; nagf_blas_zhemm; zhemm
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
Names: f06zff; nagf_blas_ztrmm; ztrmm
Keywords: blas, complex matrices; complex, m×n matrix; complex, triangular matrix; multiply, matrix; ztrmm
GAMS: D1b6
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
Names: f06zjf; nagf_blas_ztrsm; ztrsm
Keywords: blas, complex matrices; complex, triangular matrix; linear least squares; ztrsm
GAMS: D2c3
Rank-k update of a complex Hermitian matrix
Names: f06zpf; nagf_blas_zherk; zherk
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; rank k matrix updates; zherk
GAMS: D1b5
Rank-2k update of a complex Hermitian matrix
Names: f06zrf; nagf_blas_zher2k; zher2k
Keywords: blas, complex matrices; complex, Hermitian, indefinite matrix; rank k matrix updates; zher2k
GAMS: D1b6, D1b5
Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
Names: f06ztf; nagf_blas_zsymm; zsymm
Keywords: blas, complex matrices; complex, m×n matrix; complex, symmetric matrix; multiply, matrix; zsymm
GAMS: D1b6
Rank-k update of a complex symmetric matrix
Names: f06zuf; nagf_blas_zsyrk; zsyrk
Keywords: blas, complex matrices; complex, symmetric matrix; rank k matrix updates; zher2k
GAMS: D1b5
Rank-2k update of a complex symmetric matrix
Names: f06zwf; nagf_blas_zsyr2k; zsyr2k
Keywords: blas, complex matrices; complex, symmetric matrix; rank k matrix updates; zsyr2k
GAMS: D1b5
Computes the solution to a real system of linear equations
Names: f07aac; nag_dgesv; dgesv
Keywords: DGESV; finance; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution to a real system of linear equations
Names: f07aaf; nagf_lapacklin_dgesv; dgesv
Keywords: DGESV; finance; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real system of linear equations
Names: f07abc; nag_dgesvx; dgesvx
Keywords: backward error; condition number, matrix; DGESVX; error bound, matrix; finance; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real system of linear equations
Names: f07abf; nagf_lapacklin_dgesvx; dgesvx
Keywords: backward error; condition number, matrix; DGESVX; error bound, matrix; finance; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution to a real system of linear equations using mixed precision arithmetic
Names: f07acc; nag_dsgesv; dsgesv
Keywords: DSGESV; mixed-precision; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution to a real system of linear equations using mixed precision arithmetic
Names: f07acf; nagf_lapacklin_dsgesv; dsgesv
Keywords: DSGESV; mixed-precision; real, nonsymmetric matrix
GAMS: D2a1
LU factorization of real m×n matrix
Names: f07adc; nag_dgetrf; dgetrf
Keywords: DGETRF; finance; LU decomposition; real, m×n matrix
GAMS: D2a1
LU factorization of real m×n matrix
Names: f07adf; nagf_lapacklin_dgetrf; dgetrf
Keywords: DGETRF; finance; LU decomposition; real, m×n matrix
GAMS: D2a1
Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by f07adc
Names: f07aec; nag_dgetrs; dgetrs
Keywords: DGETRS; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by f07adf
Names: f07aef; nagf_lapacklin_dgetrs; dgetrs
Keywords: DGETRS; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Estimate condition number of real matrix, matrix already factorized by f07adc
Names: f07agc; nag_dgecon; dgecon
Keywords: condition number, matrix; DGECON; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Estimate condition number of real matrix, matrix already factorized by f07adf
Names: f07agf; nagf_lapacklin_dgecon; dgecon
Keywords: condition number, matrix; DGECON; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f07ahc; nag_dgerfs; dgerfs
Keywords: backward error; DGERFS; error bound, matrix; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f07ahf; nagf_lapacklin_dgerfs; dgerfs
Keywords: backward error; DGERFS; error bound, matrix; forward error; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Inverse of real matrix, matrix already factorized by f07adc
Names: f07ajc; nag_dgetri; dgetri
Keywords: DGETRI; finance; inverse, matrix; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Inverse of real matrix, matrix already factorized by f07adf
Names: f07ajf; nagf_lapacklin_dgetri; dgetri
Keywords: DGETRI; finance; inverse, matrix; LU decomposition; real, nonsymmetric matrix
GAMS: D2a1
Computes the solution to a complex system of linear equations
Names: f07anc; nag_zgesv; zgesv
Keywords: complex, nonsymmetric matrix; LU decomposition; ZGESV
GAMS: D2c1
Computes the solution to a complex system of linear equations
Names: f07anf; nagf_lapacklin_zgesv; zgesv
Keywords: complex, nonsymmetric matrix; LU decomposition; ZGESV
GAMS: D2c1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations
Names: f07apc; nag_zgesvx; zgesvx
Keywords: backward error; complex, nonsymmetric matrix; condition number, matrix; error bound, matrix; finance; forward error; LU decomposition; ZGESVX
GAMS: D2c1
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations
Names: f07apf; nagf_lapacklin_zgesvx; zgesvx
Keywords: backward error; complex, nonsymmetric matrix; condition number, matrix; error bound, matrix; finance; forward error; LU decomposition; ZGESVX
GAMS: D2c1
Computes the solution to a complex system of linear equations using mixed precision arithmetic
Names: f07aqc; nag_zcgesv; zcgesv
Keywords: complex, nonsymmetric matrix; mixed-precision; ZCGESV
GAMS: D2c1
Computes the solution to a complex system of linear equations using mixed precision arithmetic
Names: f07aqf; nagf_lapacklin_zcgesv; zcgesv
Keywords: complex, nonsymmetric matrix; mixed-precision; ZCGESV
GAMS: D2c1
LU factorization of complex m×n matrix
Names: f07arc; nag_zgetrf; zgetrf
Keywords: complex, m×n matrix; finance; LU decomposition; ZGETRF
GAMS: D2c1
LU factorization of complex m×n matrix
Names: f07arf; nagf_lapacklin_zgetrf; zgetrf
Keywords: complex, m×n matrix; finance; LU decomposition; ZGETRF
GAMS: D2c1
Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by f07arc
Names: f07asc; nag_zgetrs; zgetrs
Keywords: complex, nonsymmetric matrix; finance; LU decomposition; ZGETRS
GAMS: D2c1
Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by f07arf
Names: f07asf; nagf_lapacklin_zgetrs; zgetrs
Keywords: complex, nonsymmetric matrix; finance; LU decomposition; ZGETRS
GAMS: D2c1
Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number
Names: f07atc; nag_zgeequ; zgeequ
Keywords: complex, nonsymmetric matrix; equilibration; scaling; ZGEEQU
GAMS: D2c1
Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number
Names: f07atf; nagf_lapacklin_zgeequ; zgeequ
Keywords: complex, nonsymmetric matrix; equilibration; scaling; ZGEEQU
GAMS: D2c1
Estimate condition number of complex matrix, matrix already factorized by f07arc
Names: f07auc; nag_zgecon; zgecon
Keywords: complex, nonsymmetric matrix; condition number, matrix; ZGECON
GAMS: D2c1
Estimate condition number of complex matrix, matrix already factorized by f07arf
Names: f07auf; nagf_lapacklin_zgecon; zgecon
Keywords: complex, nonsymmetric matrix; condition number, matrix; ZGECON
GAMS: D2c1
Refined solution with error bounds of complex system of linear equations, multiple right-hand sides
Names: f07avc; nag_zgerfs; zgerfs
Keywords: backward error; complex, nonsymmetric matrix; forward error; ZGERFS
GAMS: D2c1
Refined solution with error bounds of complex system of linear equations, multiple right-hand sides
Names: f07avf; nagf_lapacklin_zgerfs; zgerfs
Keywords: backward error; complex, nonsymmetric matrix; forward error; ZGERFS
GAMS: D2c1
Inverse of complex matrix, matrix already factorized by f07arc
Names: f07awc; nag_zgetri; zgetri
Keywords: complex, nonsymmetric matrix; inverse, matrix; ZGETRI
GAMS: D2c1
Inverse of complex matrix, matrix already factorized by f07arf
Names: f07awf; nagf_lapacklin_zgetri; zgetri
Keywords: complex, nonsymmetric matrix; inverse, matrix; ZGETRI
GAMS: D2c1
Computes the solution to a real banded system of linear equations
Names: f07bac; nag_dgbsv; dgbsv
Keywords: DGBSV; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution to a real banded system of linear equations
Names: f07baf; nagf_lapacklin_dgbsv; dgbsv
Keywords: DGBSV; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real banded system of linear equations
Names: f07bbc; nag_dgbsvx; dgbsvx
Keywords: backward error; condition number, matrix; DGBSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real banded system of linear equations
Names: f07bbf; nagf_lapacklin_dgbsvx; dgbsvx
Keywords: backward error; condition number, matrix; DGBSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
LU factorization of real m×n band matrix
Names: f07bdc; nag_dgbtrf; dgbtrf
Keywords: DGBTRF; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
LU factorization of real m×n band matrix
Names: f07bdf; nagf_lapacklin_dgbtrf; dgbtrf
Keywords: DGBTRF; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Solution of real band system of linear equations, multiple right-hand sides, matrix already factorized by f07bdc
Names: f07bec; nag_dgbtrs; dgbtrs
Keywords: DGBTRS; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Solution of real band system of linear equations, multiple right-hand sides, matrix already factorized by f07bdf
Names: f07bef; nagf_lapacklin_dgbtrs; dgbtrs
Keywords: DGBTRS; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Estimate condition number of real band matrix, matrix already factorized by f07bdc
Names: f07bgc; nag_dgbcon; dgbcon
Keywords: condition number, matrix; DGBCON; matrix, band; real, band matrix
GAMS: D2a2
Estimate condition number of real band matrix, matrix already factorized by f07bdf
Names: f07bgf; nagf_lapacklin_dgbcon; dgbcon
Keywords: condition number, matrix; DGBCON; matrix, band; real, band matrix
GAMS: D2a2
Refined solution with error bounds of real band system of linear equations, multiple right-hand sides
Names: f07bhc; nag_dgbrfs; dgbrfs
Keywords: backward error; DGBRFS; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Refined solution with error bounds of real band system of linear equations, multiple right-hand sides
Names: f07bhf; nagf_lapacklin_dgbrfs; dgbrfs
Keywords: backward error; DGBRFS; forward error; LU decomposition; matrix, band; real, band matrix
GAMS: D2a2
Computes the solution to a complex banded system of linear equations
Names: f07bnc; nag_zgbsv; zgbsv
Keywords: complex, band matrix; LU decomposition; matrix, band; ZGBSV
GAMS: D2c2
Computes the solution to a complex banded system of linear equations
Names: f07bnf; nagf_lapacklin_zgbsv; zgbsv
Keywords: complex, band matrix; LU decomposition; matrix, band; ZGBSV
GAMS: D2c2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex banded system of linear equations
Names: f07bpc; nag_zgbsvx; zgbsvx
Keywords: backward error; complex, band matrix; condition number, matrix; error bound, matrix; forward error; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex banded system of linear equations
Names: f07bpf; nagf_lapacklin_zgbsvx; zgbsvx
Keywords: backward error; complex, band matrix; condition number, matrix; error bound, matrix; forward error; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
LU factorization of complex m×n band matrix
Names: f07brc; nag_zgbtrf; zgbtrf
Keywords: complex, m×n matrix; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
LU factorization of complex m×n band matrix
Names: f07brf; nagf_lapacklin_zgbtrf; zgbtrf
Keywords: complex, m×n matrix; LU decomposition; matrix, band; ZGBSVX
GAMS: D2c2
Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by f07brc
Names: f07bsc; nag_zgbtrs; zgbtrs
Keywords: complex, band matrix; LU decomposition; matrix, band; ZGBTRS
GAMS: D2c2
Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by f07brf
Names: f07bsf; nagf_lapacklin_zgbtrs; zgbtrs
Keywords: complex, band matrix; LU decomposition; matrix, band; ZGBTRS
GAMS: D2c2
Computes row and column scalings intended to equilibrate a complex banded matrix and reduce its condition number
Names: f07btc; nag_zgbequ; zgbequ
Keywords: complex, band matrix; equilibration; matrix, band; scaling; ZGBEQU
GAMS: D2c2
Computes row and column scalings intended to equilibrate a complex banded matrix and reduce its condition number
Names: f07btf; nagf_lapacklin_zgbequ; zgbequ
Keywords: complex, band matrix; equilibration; matrix, band; scaling; ZGBEQU
GAMS: D2c2
Estimate condition number of complex band matrix, matrix already factorized by f07brc
Names: f07buc; nag_zgbcon; zgbcon
Keywords: complex, band matrix; condition number, matrix; matrix, band; ZGBEQU
GAMS: D2c2
Estimate condition number of complex band matrix, matrix already factorized by f07brf
Names: f07buf; nagf_lapacklin_zgbcon; zgbcon
Keywords: complex, band matrix; condition number, matrix; matrix, band; ZGBEQU
GAMS: D2c2
Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides
Names: f07bvc; nag_zgbrfs; zgbrfs
Keywords: backward error; complex, band matrix; error bound, matrix; forward error; matrix, band; ZGBRFS
GAMS: D2c2
Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides
Names: f07bvf; nagf_lapacklin_zgbrfs; zgbrfs
Keywords: backward error; complex, band matrix; error bound, matrix; forward error; matrix, band; ZGBRFS
GAMS: D2c2
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real tridiagonal system of linear equations
Names: f07cbc; nag_dgtsvx; dgtsvx
Keywords: backward error; condition number, matrix; DGTSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real tridiagonal system of linear equations
Names: f07cbf; nagf_lapacklin_dgtsvx; dgtsvx
Keywords: backward error; condition number, matrix; DGTSVX; error bound, matrix; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Estimates the reciprocal of the condition number of a real tridiagonal matrix using the LU factorization computed by f07cdc
Names: f07cgc; nag_dgtcon; dgtcon
Keywords: condition number, matrix; DGTCON; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Estimates the reciprocal of the condition number of a real tridiagonal matrix using the LU factorization computed by f07cdf
Names: f07cgf; nagf_lapacklin_dgtcon; dgtcon
Keywords: condition number, matrix; DGTCON; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Refined solution with error bounds of real tridiagonal system of linear equations, multiple right-hand sides
Names: f07chc; nag_dgtrfs; dgtrfs
Keywords: backward error; DGTCON; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Refined solution with error bounds of real tridiagonal system of linear equations, multiple right-hand sides
Names: f07chf; nagf_lapacklin_dgtrfs; dgtrfs
Keywords: backward error; DGTCON; forward error; LU decomposition; matrix, band; real, tridiagonal matrix
GAMS: D2a2a
Computes the solution to a complex tridiagonal system of linear equations
Names: f07cnc; nag_zgtsv; zgtsv
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTSV
GAMS: D2c2a
Computes the solution to a complex tridiagonal system of linear equations
Names: f07cnf; nagf_lapacklin_zgtsv; zgtsv
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTSV
GAMS: D2c2a
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex tridiagonal system of linear equations
Names: f07cpc; nag_zgtsvx; zgtsvx
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTSVX
GAMS: D2c2a
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex tridiagonal system of linear equations
Names: f07cpf; nagf_lapacklin_zgtsvx; zgtsvx
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTSVX
GAMS: D2c2a
LU factorization of complex tridiagonal matrix
Names: f07crc; nag_zgttrf; zgttrf
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTTRF
GAMS: D2c2a
LU factorization of complex tridiagonal matrix
Names: f07crf; nagf_lapacklin_zgttrf; zgttrf
Keywords: complex, tridiagonal matrix; LU decomposition; matrix, band; ZGTTRF
GAMS: D2c2a
Estimates the reciprocal of the condition number of a complex tridiagonal matrix using the LU factorization computed by f07cdc
Names: f07cuc; nag_zgtcon; zgtcon
Keywords: complex, tridiagonal matrix; condition number, matrix; LU decomposition; matrix, band; ZGTCON
GAMS: D2c2a
Estimates the reciprocal of the condition number of a complex tridiagonal matrix using the LU factorization computed by f07cdf
Names: f07cuf; nagf_lapacklin_zgtcon; zgtcon
Keywords: complex, tridiagonal matrix; condition number, matrix; LU decomposition; matrix, band; ZGTCON
GAMS: D2c2a
Refined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides
Names: f07cvc; nag_zgtrfs; zgtrfs
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTRFS
GAMS: D2c2a
Refined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides
Names: f07cvf; nagf_lapacklin_zgtrfs; zgtrfs
Keywords: backward error; complex, tridiagonal matrix; forward error; LU decomposition; matrix, band; ZGTRFS
GAMS: D2c2a
Computes the solution to a real symmetric positive definite system of linear equations
Names: f07fac; nag_dposv; dposv
Keywords: Cholesky decomposition; DPOSV; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a real symmetric positive definite system of linear equations
Names: f07faf; nagf_lapacklin_dposv; dposv
Keywords: Cholesky decomposition; DPOSV; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations
Names: f07fbc; nag_dposvx; dposvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPOSVX; error bound, matrix; finance; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations
Names: f07fbf; nagf_lapacklin_dposvx; dposvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPOSVX; error bound, matrix; finance; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a real symmetric positive definite system of linear equations using mixed precision arithmetic
Names: f07fcf; nagf_lapacklin_dsposv; dsposv
Keywords: Cholesky decomposition; DSPOSV; mixed-precision; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix
Names: f07fdc; nag_dpotrf; dpotrf
Keywords: Cholesky decomposition; DPOTRF; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix
Names: f07fdf; nagf_lapacklin_dpotrf; dpotrf
Keywords: Cholesky decomposition; DPOTRF; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07fdc
Names: f07fec; nag_dpotrs; dpotrs
Keywords: Cholesky decomposition; DPOTRS; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07fdf
Names: f07fef; nagf_lapacklin_dpotrs; dpotrs
Keywords: Cholesky decomposition; DPOTRS; finance; real, positive definite, symmetric matrix
GAMS: D2b1b
Estimate condition number of real symmetric positive definite matrix, matrix already factorized by f07fdc
Names: f07fgc; nag_dpocon; dpocon
Keywords: condition number, matrix; DPOCON; real, positive definite, symmetric matrix
GAMS: D2b1b
Estimate condition number of real symmetric positive definite matrix, matrix already factorized by f07fdf
Names: f07fgf; nagf_lapacklin_dpocon; dpocon
Keywords: condition number, matrix; DPOCON; real, positive definite, symmetric matrix
GAMS: D2b1b
Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides
Names: f07fhc; nag_dporfs; dporfs
Keywords: backward error; Cholesky decomposition; DPORFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides
Names: f07fhf; nagf_lapacklin_dporfs; dporfs
Keywords: backward error; Cholesky decomposition; DPORFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by f07fdc
Names: f07fjc; nag_dpotri; dpotri
Keywords: Cholesky decomposition; DPOTRI; finance; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by f07fdf
Names: f07fjf; nagf_lapacklin_dpotri; dpotri
Keywords: Cholesky decomposition; DPOTRI; finance; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a complex Hermitian positive definite system of linear equations
Names: f07fnc; nag_zposv; zposv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOSV
GAMS: D2d1b
Computes the solution to a complex Hermitian positive definite system of linear equations
Names: f07fnf; nagf_lapacklin_zposv; zposv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOSV
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations
Names: f07fpc; nag_zposvx; zposvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; finance; forward error; ZPOSVX
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations
Names: f07fpf; nagf_lapacklin_zposvx; zposvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; finance; forward error; ZPOSVX
GAMS: D2d1b
Computes the solution to a complex Hermitian positive definite system of linear equations using mixed precision arithmetic
Names: f07fqf; nagf_lapacklin_zcposv; zcposv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; mixed-precision; ZCPOSV
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix
Names: f07frc; nag_zpotrf; zpotrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix
Names: f07frf; nagf_lapacklin_zpotrf; zpotrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRF
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07frc
Names: f07fsc; nag_zpotrs; zpotrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRS
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07frf
Names: f07fsf; nagf_lapacklin_zpotrs; zpotrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPOTRS
GAMS: D2d1b
Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by f07frc
Names: f07fuc; nag_zpocon; zpocon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; ZPOCON
GAMS: D2d1b
Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by f07frf
Names: f07fuf; nagf_lapacklin_zpocon; zpocon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; ZPOCON
GAMS: D2d1b
Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides
Names: f07fvc; nag_zporfs; zporfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPORFS
GAMS: D2d1b
Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides
Names: f07fvf; nagf_lapacklin_zporfs; zporfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPORFS
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07frc
Names: f07fwc; nag_zpotri; zpotri
Keywords: complex, Hermitian, positive definite matrix; inverse, matrix; ZPOTRI
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07frf
Names: f07fwf; nagf_lapacklin_zpotri; zpotri
Keywords: complex, Hermitian, positive definite matrix; inverse, matrix; ZPOTRI
GAMS: D2d1b
Computes the solution to a real symmetric positive definite system of linear equations, packed storage
Names: f07gac; nag_dppsv; dppsv
Keywords: Cholesky decomposition; DPPSV; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a real symmetric positive definite system of linear equations, packed storage
Names: f07gaf; nagf_lapacklin_dppsv; dppsv
Keywords: Cholesky decomposition; DPPSV; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations, packed storage
Names: f07gbc; nag_dppsvx; dppsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPPSVX; error bound, matrix; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations, packed storage
Names: f07gbf; nagf_lapacklin_dppsvx; dppsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPPSVX; error bound, matrix; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix, packed storage
Names: f07gdc; nag_dpptrf; dpptrf
Keywords: Cholesky decomposition; DPPTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix, packed storage
Names: f07gdf; nagf_lapacklin_dpptrf; dpptrf
Keywords: Cholesky decomposition; DPPTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07gdc, packed storage
Names: f07gec; nag_dpptrs; dpptrs
Keywords: Cholesky decomposition; DPPTRS; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07gdf, packed storage
Names: f07gef; nagf_lapacklin_dpptrs; dpptrs
Keywords: Cholesky decomposition; DPPTRS; real, positive definite, symmetric matrix
GAMS: D2b1b
Estimate condition number of real symmetric positive definite matrix, matrix already factorized by f07gdc, packed storage
Names: f07ggc; nag_dppcon; dppcon
Keywords: Cholesky decomposition; condition number, matrix; DPPCON; real, positive definite, symmetric matrix
GAMS: D2b1b
Estimate condition number of real symmetric positive definite matrix, matrix already factorized by f07gdf, packed storage
Names: f07ggf; nagf_lapacklin_dppcon; dppcon
Keywords: Cholesky decomposition; condition number, matrix; DPPCON; real, positive definite, symmetric matrix
GAMS: D2b1b
Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07ghc; nag_dpprfs; dpprfs
Keywords: backward error; Cholesky decomposition; DPPRFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07ghf; nagf_lapacklin_dpprfs; dpprfs
Keywords: backward error; Cholesky decomposition; DPPRFS; forward error; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by f07gdc, packed storage
Names: f07gjc; nag_dpptri; dpptri
Keywords: Cholesky decomposition; DPPTRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by f07gdf, packed storage
Names: f07gjf; nagf_lapacklin_dpptri; dpptri
Keywords: Cholesky decomposition; DPPTRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1b
Computes the solution to a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gnc; nag_zppsv; zppsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPSV
GAMS: D2d1b
Computes the solution to a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gnf; nagf_lapacklin_zppsv; zppsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPSV
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gpc; nag_zppsvx; zppsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; ZPPSVX
GAMS: D2d1b
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations, packed storage
Names: f07gpf; nagf_lapacklin_zppsvx; zppsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; ZPPSVX
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix, packed storage
Names: f07grc; nag_zpptrf; zpptrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix, packed storage
Names: f07grf; nagf_lapacklin_zpptrf; zpptrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRF
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07grc, packed storage
Names: f07gsc; nag_zpptrs; zpptrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRS
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07grf, packed storage
Names: f07gsf; nagf_lapacklin_zpptrs; zpptrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPPTRS
GAMS: D2d1b
Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by f07grc, packed storage
Names: f07guc; nag_zppcon; zppcon
Keywords: complex, Hermitian, positive definite matrix; condition number, matrix; ZPPCON
GAMS: D2d1b
Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by f07grf, packed storage
Names: f07guf; nagf_lapacklin_zppcon; zppcon
Keywords: complex, Hermitian, positive definite matrix; condition number, matrix; ZPPCON
GAMS: D2d1b
Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07gvc; nag_zpprfs; zpprfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPPRFS
GAMS: D2d1b
Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides, packed storage
Names: f07gvf; nagf_lapacklin_zpprfs; zpprfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite matrix; error bound, matrix; forward error; ZPPRFS
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07grc, packed storage
Names: f07gwc; nag_zpptri; zpptri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; inverse, matrix; ZPPTRI
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07grf, packed storage
Names: f07gwf; nagf_lapacklin_zpptri; zpptri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; inverse, matrix; ZPPTRI
GAMS: D2d1b
Computes the solution to a real symmetric positive definite banded system of linear equations
Names: f07hac; nag_dpbsv; dpbsv
Keywords: Cholesky decomposition; DPBSV; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution to a real symmetric positive definite banded system of linear equations
Names: f07haf; nagf_lapacklin_dpbsv; dpbsv
Keywords: Cholesky decomposition; DPBSV; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite banded system of linear equations
Names: f07hbc; nag_dpbsvx; dpbsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPBSVX; error bound, matrix; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite banded system of linear equations
Names: f07hbf; nagf_lapacklin_dpbsvx; dpbsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPBSVX; error bound, matrix; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Cholesky factorization of real symmetric positive definite band matrix
Names: f07hdc; nag_dpbtrf; dpbtrf
Keywords: Cholesky decomposition; DPBTRF; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Cholesky factorization of real symmetric positive definite band matrix
Names: f07hdf; nagf_lapacklin_dpbtrf; dpbtrf
Keywords: Cholesky decomposition; DPBTRF; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Solution of real symmetric positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by f07hdc
Names: f07hec; nag_dpbtrs; dpbtrs
Keywords: Cholesky decomposition; DPBTRS; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Solution of real symmetric positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by f07hdf
Names: f07hef; nagf_lapacklin_dpbtrs; dpbtrs
Keywords: Cholesky decomposition; DPBTRS; finance; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Estimate condition number of real symmetric positive definite band matrix, matrix already factorized by f07hdc
Names: f07hgc; nag_dpbcon; dpbcon
Keywords: condition number, matrix; DPBCON; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Estimate condition number of real symmetric positive definite band matrix, matrix already factorized by f07hdf
Names: f07hgf; nagf_lapacklin_dpbcon; dpbcon
Keywords: condition number, matrix; DPBCON; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Refined solution with error bounds of real symmetric positive definite band system of linear equations, multiple right-hand sides
Names: f07hhc; nag_dpbrfs; dpbrfs
Keywords: backward error; Cholesky decomposition; DPBRFS; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Refined solution with error bounds of real symmetric positive definite band system of linear equations, multiple right-hand sides
Names: f07hhf; nagf_lapacklin_dpbrfs; dpbrfs
Keywords: backward error; Cholesky decomposition; DPBRFS; forward error; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes the solution to a complex Hermitian positive definite banded system of linear equations
Names: f07hnc; nag_zpbsv; zpbsv
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBSV
GAMS: D2d2
Computes the solution to a complex Hermitian positive definite banded system of linear equations
Names: f07hnf; nagf_lapacklin_zpbsv; zpbsv
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBSV
GAMS: D2d2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite banded system of linear equations
Names: f07hpc; nag_zpbsvx; zpbsvx
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPBSVX
GAMS: D2d2
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite banded system of linear equations
Names: f07hpf; nagf_lapacklin_zpbsvx; zpbsvx
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPBSVX
GAMS: D2d2
Cholesky factorization of complex Hermitian positive definite band matrix
Names: f07hrc; nag_zpbtrf; zpbtrf
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRF
GAMS: D2d2
Cholesky factorization of complex Hermitian positive definite band matrix
Names: f07hrf; nagf_lapacklin_zpbtrf; zpbtrf
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRF
GAMS: D2d2
Solution of complex Hermitian positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by f07hrc
Names: f07hsc; nag_zpbtrs; zpbtrs
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRS
GAMS: D2d2
Solution of complex Hermitian positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by f07hrf
Names: f07hsf; nagf_lapacklin_zpbtrs; zpbtrs
Keywords: Cholesky decomposition; complex, band, Hermitian, positive definite matrix; matrix, band; ZPBTRS
GAMS: D2d2
Estimate condition number of complex Hermitian positive definite band matrix, matrix already factorized by f07hrc
Names: f07huc; nag_zpbcon; zpbcon
Keywords: complex, band, Hermitian, positive definite matrix; condition number, matrix; matrix, band; ZPBCON
GAMS: D2d2
Estimate condition number of complex Hermitian positive definite band matrix, matrix already factorized by f07hrf
Names: f07huf; nagf_lapacklin_zpbcon; zpbcon
Keywords: complex, band, Hermitian, positive definite matrix; condition number, matrix; matrix, band; ZPBCON
GAMS: D2d2
Refined solution with error bounds of complex Hermitian positive definite band system of linear equations, multiple right-hand sides
Names: f07hvc; nag_zpbrfs; zpbrfs
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; error bound, matrix; forward error; matrix, band; ZPBRFS
GAMS: D2d2
Refined solution with error bounds of complex Hermitian positive definite band system of linear equations, multiple right-hand sides
Names: f07hvf; nagf_lapacklin_zpbrfs; zpbrfs
Keywords: backward error; Cholesky decomposition; complex, band, Hermitian, positive definite matrix; error bound, matrix; forward error; matrix, band; ZPBRFS
GAMS: D2d2
Computes the solution to a real symmetric positive definite tridiagonal system of linear equations
Names: f07jac; nag_dptsv; dptsv
Keywords: Cholesky decomposition; DPTSV; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Computes the solution to a real symmetric positive definite tridiagonal system of linear equations
Names: f07jaf; nagf_lapacklin_dptsv; dptsv
Keywords: Cholesky decomposition; DPTSV; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite tridiagonal system of linear equations
Names: f07jbc; nag_dptsvx; dptsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPTSVX; error bound, matrix; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite tridiagonal system of linear equations
Names: f07jbf; nagf_lapacklin_dptsvx; dptsvx
Keywords: backward error; Cholesky decomposition; condition number, matrix; DPTSVX; error bound, matrix; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Solves a real symmetric positive definite tridiagonal system using the LDLT factorization computed by f07jdc
Names: f07jec; nag_dpttrs; dpttrs
Keywords: Cholesky decomposition; DPTTRS; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Solves a real symmetric positive definite tridiagonal system using the LDLT factorization computed by f07jdf
Names: f07jef; nagf_lapacklin_dpttrs; dpttrs
Keywords: Cholesky decomposition; DPTTRS; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Computes the reciprocal of the condition number of a real symmetric positive definite tridiagonal system using the LDLT factorization computed by f07jdc
Names: f07jgc; nag_dptcon; dptcon
Keywords: condition number, matrix; DPTCON; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Computes the reciprocal of the condition number of a real symmetric positive definite tridiagonal system using the LDLT factorization computed by f07jdf
Names: f07jgf; nagf_lapacklin_dptcon; dptcon
Keywords: condition number, matrix; DPTCON; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Refined solution with error bounds of real symmetric positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jhc; nag_dptrfs; dptrfs
Keywords: backward error; Cholesky decomposition; DPTRFS; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Refined solution with error bounds of real symmetric positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jhf; nagf_lapacklin_dptrfs; dptrfs
Keywords: backward error; Cholesky decomposition; DPTRFS; forward error; matrix, band; real, positive definite, symmetric, tridiagonal matrix
GAMS: D2b2a
Computes the solution to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jnc; nag_zptsv; zptsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPTSV
GAMS: D2d2a
Computes the solution to a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jnf; nagf_lapacklin_zptsv; zptsv
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPTSV
GAMS: D2d2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jpc; nag_zptsvx; zptsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPTSVX
GAMS: D2d2a
Uses the LDLT factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite tridiagonal system of linear equations
Names: f07jpf; nagf_lapacklin_zptsvx; zptsvx
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; error bound, matrix; forward error; matrix, band; ZPTSVX
GAMS: D2d2a
Solves a complex Hermitian positive definite tridiagonal system using the LDLH factorization computed by f07jrc
Names: f07jsc; nag_zpttrs; zpttrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPPTRS
GAMS: D2d2a
Solves a complex Hermitian positive definite tridiagonal system using the LDLH factorization computed by f07jrf
Names: f07jsf; nagf_lapacklin_zpttrs; zpttrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; matrix, band; ZPPTRS
GAMS: D2d2a
Computes the reciprocal of the condition number of a complex Hermitian positive definite tridiagonal system using the LDLH factorization computed by f07jrc
Names: f07juc; nag_zptcon; zptcon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; matrix, band; ZPTCON
GAMS: D2d2a
Computes the reciprocal of the condition number of a complex Hermitian positive definite tridiagonal system using the LDLH factorization computed by f07jrf
Names: f07juf; nagf_lapacklin_zptcon; zptcon
Keywords: Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; condition number, matrix; matrix, band; ZPTCON
GAMS: D2d2a
Refined solution with error bounds of complex Hermitian positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jvc; nag_zptrfs; zptrfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; forward error; matrix, band; ZPTRFS
GAMS: D2d2a
Refined solution with error bounds of complex Hermitian positive definite tridiagonal system of linear equations, multiple right-hand sides
Names: f07jvf; nagf_lapacklin_zptrfs; zptrfs
Keywords: backward error; Cholesky decomposition; complex, Hermitian, positive definite, tridiagonal matrix; forward error; matrix, band; ZPTRFS
GAMS: D2d2a
Cholesky factorization, with complete pivoting, of a real, symmetric, positive semidefinite matrix
Names: f07kdc; nag_dpstrf; dpstrf
Keywords: Cholesky decomposition; DPSTRF; real, positive-semidefinite, symmetric matrix
GAMS: D2b1b
Cholesky factorization, with complete pivoting, of a real, symmetric, positive semidefinite matrix
Names: f07kdf; nagf_lapacklin_dpstrf; dpstrf
Keywords: Cholesky decomposition; DPSTRF; real, positive-semidefinite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of complex Hermitian positive semidefinite matrix
Names: f07krc; nag_zpstrf; zpstrf
Keywords: Cholesky decomposition; complex, Hermitian, positive-semidefinite matrix; ZPSTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive semidefinite matrix
Names: f07krf; nagf_lapacklin_zpstrf; zpstrf
Keywords: Cholesky decomposition; complex, Hermitian, positive-semidefinite matrix; ZPSTRF
GAMS: D2d1b
Computes the solution to a real symmetric system of linear equations
Names: f07mac; nag_dsysv; dsysv
Keywords: diagonal pivoting method; DSYSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Computes the solution to a real symmetric system of linear equations
Names: f07maf; nagf_lapacklin_dsysv; dsysv
Keywords: diagonal pivoting method; DSYSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations
Names: f07mbc; nag_dsysvx; dsysvx
Keywords: backward error; diagonal pivoting method; DSYSVX; forward error; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations
Names: f07mbf; nagf_lapacklin_dsysvx; dsysvx
Keywords: backward error; diagonal pivoting method; DSYSVX; forward error; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decompositiuon
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix
Names: f07mdc; nag_dsytrf; dsytrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix
Names: f07mdf; nagf_lapacklin_dsytrf; dsytrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07mdc
Names: f07mec; nag_dsytrs; dsytrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRS; real, indefinite, symmetric matrix
GAMS: D2b1a
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07mdf
Names: f07mef; nagf_lapacklin_dsytrs; dsytrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRS; real, indefinite, symmetric matrix
GAMS: D2b1a
Estimate condition number of real symmetric indefinite matrix, matrix already factorized by f07mdc
Names: f07mgc; nag_dsycon; dsycon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSYCON; real, indefinite, symmetric matrix
GAMS: D2b1a
Estimate condition number of real symmetric indefinite matrix, matrix already factorized by f07mdf
Names: f07mgf; nagf_lapacklin_dsycon; dsycon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSYCON; real, indefinite, symmetric matrix
GAMS: D2b1a
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides
Names: f07mhc; nag_dsyrfs; dsyrfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSYRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides
Names: f07mhf; nagf_lapacklin_dsyrfs; dsyrfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSYRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Inverse of real symmetric indefinite matrix, matrix already factorized by f07mdc
Names: f07mjc; nag_dsytri; dsytri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1a
Inverse of real symmetric indefinite matrix, matrix already factorized by f07mdf
Names: f07mjf; nagf_lapacklin_dsytri; dsytri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSYTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1a
Computes the solution to a complex Hermitian system of linear equations
Names: f07mnc; nag_zhesv; zhesv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZHESV
GAMS: D2d1a
Computes the solution to a complex Hermitian system of linear equations
Names: f07mnf; nagf_lapacklin_zhesv; zhesv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZHESV
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations
Names: f07mpc; nag_zhesvx; zhesvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZHESVX
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations
Names: f07mpf; nagf_lapacklin_zhesvx; zhesvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZHESVX
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix
Names: f07mrc; nag_zhetrf; zhetrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRF
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix
Names: f07mrf; nagf_lapacklin_zhetrf; zhetrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRF
GAMS: D2d1a
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07mrc
Names: f07msc; nag_zhetrs; zhetrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRS
GAMS: D2d1a
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07mrf
Names: f07msf; nagf_lapacklin_zhetrs; zhetrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHETRS
GAMS: D2d1a
Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by f07mrc
Names: f07muc; nag_zhecon; zhecon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHECON
GAMS: D2d1a
Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by f07mrf
Names: f07muf; nagf_lapacklin_zhecon; zhecon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHECON
GAMS: D2d1a
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides
Names: f07mvc; nag_zherfs; zherfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHERFS
GAMS: D2d1a
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides
Names: f07mvf; nagf_lapacklin_zherfs; zherfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHERFS
GAMS: D2d1a
Inverse of complex Hermitian indefinite matrix, matrix already factorized by f07mrc
Names: f07mwc; nag_zhetri; zhetri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHETRI
GAMS: D2d1a
Inverse of complex Hermitian indefinite matrix, matrix already factorized by f07mrf
Names: f07mwf; nagf_lapacklin_zhetri; zhetri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHETRI
GAMS: D2d1a
Computes the solution to a complex symmetric system of linear equations
Names: f07nnc; nag_zsysv; zsysv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZSYSV
GAMS: D2c1
Computes the solution to a complex symmetric system of linear equations
Names: f07nnf; nagf_lapacklin_zsysv; zsysv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLH decomposition; UDUH decomposition; ZSYSV
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations
Names: f07npc; nag_zsysvx; zsysvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZSYSVX
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations
Names: f07npf; nagf_lapacklin_zsysvx; zsysvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLH decomposition; UDUH decomposition; ZSYSVX
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix
Names: f07nrc; nag_zsytrf; zsytrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRF
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix
Names: f07nrf; nagf_lapacklin_zsytrf; zsytrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRF
GAMS: D2c1
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by f07nrc
Names: f07nsc; nag_zsytrs; zsytrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRS
GAMS: D2c1
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by f07nrf
Names: f07nsf; nagf_lapacklin_zsytrs; zsytrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSYTRS
GAMS: D2c1
Estimate condition number of complex symmetric matrix, matrix already factorized by f07nrc
Names: f07nuc; nag_zsycon; zsycon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSYCON
GAMS: D2c1
Estimate condition number of complex symmetric matrix, matrix already factorized by f07nrf
Names: f07nuf; nagf_lapacklin_zsycon; zsycon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSYCON
GAMS: D2c1
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides
Names: f07nvc; nag_zsyrfs; zsyrfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSYRFS
GAMS: D2c1
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides
Names: f07nvf; nagf_lapacklin_zsyrfs; zsyrfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSYRFS
GAMS: D2c1
Inverse of complex symmetric matrix, matrix already factorized by f07nrc
Names: f07nwc; nag_zsytri; zsytri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSYTRI
GAMS: D2c1
Inverse of complex symmetric matrix, matrix already factorized by f07nrf
Names: f07nwf; nagf_lapacklin_zsytri; zsytri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSYTRI
GAMS: D2c1
Computes the solution to a real symmetric system of linear equations, packed storage
Names: f07pac; nag_dspsv; dspsv
Keywords: diagonal pivoting method; DSPSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decomposition
GAMS: D2b1a
Computes the solution to a real symmetric system of linear equations, packed storage
Names: f07paf; nagf_lapacklin_dspsv; dspsv
Keywords: diagonal pivoting method; DSPSV; LDLT decomposition; real, indefinite, symmetric matrix; UDUT decomposition
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage. Error bounds and a condition estimate are also computed
Names: f07pbc; nag_dspsvx; dspsvx
Keywords: backward error; condition number, matrix; diagonal pivoting method; DSPSVX; error bound, matrix; forward error; LDLH decomposition; real, indefinite, symmetric matrix; UDUH decomposition
GAMS: D2b1a
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage. Error bounds and a condition estimate are also computed
Names: f07pbf; nagf_lapacklin_dspsvx; dspsvx
Keywords: backward error; condition number, matrix; diagonal pivoting method; DSPSVX; error bound, matrix; forward error; LDLH decomposition; real, indefinite, symmetric matrix; UDUH decomposition
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix, packed storage
Names: f07pdc; nag_dsptrf; dsptrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Bunch–Kaufman factorization of real symmetric indefinite matrix, packed storage
Names: f07pdf; nagf_lapacklin_dsptrf; dsptrf
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRF; real, indefinite, symmetric matrix
GAMS: D2b1a
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07pdc, packed storage
Names: f07pec; nag_dsptrs; dsptrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRS; real, indefinite, symmetric matrix
GAMS: D2b1a
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07pdf, packed storage
Names: f07pef; nagf_lapacklin_dsptrs; dsptrs
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRS; real, indefinite, symmetric matrix
GAMS: D2b1a
Estimate condition number of real symmetric indefinite matrix, matrix already factorized by f07pdc, packed storage
Names: f07pgc; nag_dspcon; dspcon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSPCON; real, indefinite, symmetric matrix
GAMS: D2b1a
Estimate condition number of real symmetric indefinite matrix, matrix already factorized by f07pdf, packed storage
Names: f07pgf; nagf_lapacklin_dspcon; dspcon
Keywords: Bunch–Kaufman factorization; condition number, matrix; diagonal pivoting method; DSPCON; real, indefinite, symmetric matrix
GAMS: D2b1a
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07phc; nag_dsprfs; dsprfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSPRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07phf; nagf_lapacklin_dsprfs; dsprfs
Keywords: backward error; Bunch–Kaufman factorization; diagonal pivoting method; DSPRFS; forward error; real, indefinite, symmetric matrix
GAMS: D2b1a
Inverse of real symmetric indefinite matrix, matrix already factorized by f07pdc, packed storage
Names: f07pjc; nag_dsptri; dsptri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1a
Inverse of real symmetric indefinite matrix, matrix already factorized by f07pdf, packed storage
Names: f07pjf; nagf_lapacklin_dsptri; dsptri
Keywords: Bunch–Kaufman factorization; diagonal pivoting method; DSPTRI; inverse, matrix; real, indefinite, symmetric matrix
GAMS: D2b1a
Computes the solution to a complex Hermitian system of linear equations, packed storage
Names: f07pnc; nag_zhpsv; zhpsv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSV
GAMS: D2d1a
Computes the solution to a complex Hermitian system of linear equations, packed storage
Names: f07pnf; nagf_lapacklin_zhpsv; zhpsv
Keywords: complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSV
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex, Hermitian, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07ppc; nag_zhpsvx; zhpsvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSVX
GAMS: D2d1a
Uses the diagonal pivoting factorization to compute the solution to a complex, Hermitian, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07ppf; nagf_lapacklin_zhpsvx; zhpsvx
Keywords: backward error; complex, Hermitian, indefinite matrix; diagonal pivoting method; forward error; inverse, matrix; LDLH decomposition; UDUH decomposition; ZHPSVX
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix, packed storage
Names: f07prc; nag_zhptrf; zhptrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRF
GAMS: D2d1a
Bunch–Kaufman factorization of complex Hermitian indefinite matrix, packed storage
Names: f07prf; nagf_lapacklin_zhptrf; zhptrf
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRF
GAMS: D2d1a
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07prc, packed storage
Names: f07psc; nag_zhptrs; zhptrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRS
GAMS: D2d1a
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07prf, packed storage
Names: f07psf; nagf_lapacklin_zhptrs; zhptrs
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; ZHPTRS
GAMS: D2d1a
Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by f07prc, packed storage
Names: f07puc; nag_zhpcon; zhpcon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHPCON
GAMS: D2d1a
Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by f07prf, packed storage
Names: f07puf; nagf_lapacklin_zhpcon; zhpcon
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; condition number, matrix; diagonal pivoting method; ZHPCON
GAMS: D2d1a
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07pvc; nag_zhprfs; zhprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHPRFS
GAMS: D2d1a
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
Names: f07pvf; nagf_lapacklin_zhprfs; zhprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; error bound, matrix; forward error; ZHPRFS
GAMS: D2d1a
Inverse of complex Hermitian indefinite matrix, matrix already factorized by f07prc, packed storage
Names: f07pwc; nag_zhptri; zhptri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHPTRI
GAMS: D2d1a
Inverse of complex Hermitian indefinite matrix, matrix already factorized by f07prf, packed storage
Names: f07pwf; nagf_lapacklin_zhptri; zhptri
Keywords: Bunch–Kaufman factorization; complex, Hermitian, indefinite matrix; diagonal pivoting method; inverse, matrix; ZHPTRI
GAMS: D2d1a
Computes the solution to a complex symmetric system of linear equations, packed storage
Names: f07qnc; nag_zspsv; zspsv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLT decomposition; UDUT decomposition; ZSPSV
GAMS: D2c1
Computes the solution to a complex symmetric system of linear equations, packed storage
Names: f07qnf; nagf_lapacklin_zspsv; zspsv
Keywords: complex, symmetric matrix; diagonal pivoting method; LDLT decomposition; UDUT decomposition; ZSPSV
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex, symmetric, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07qpc; nag_zspsvx; zspsvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLT decomposition; UDUT decomposition; ZSPSVX
GAMS: D2c1
Uses the diagonal pivoting factorization to compute the solution to a complex, symmetric, system of linear equations, error bounds and condition estimates. Packed storage
Names: f07qpf; nagf_lapacklin_zspsvx; zspsvx
Keywords: backward error; complex, symmetric matrix; diagonal pivoting method; forward error; LDLT decomposition; UDUT decomposition; ZSPSVX
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix, packed storage
Names: f07qrc; nag_zsptrf; zsptrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRF
GAMS: D2c1
Bunch–Kaufman factorization of complex symmetric matrix, packed storage
Names: f07qrf; nagf_lapacklin_zsptrf; zsptrf
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRF
GAMS: D2c1
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by f07qrc, packed storage
Names: f07qsc; nag_zsptrs; zsptrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRS
GAMS: D2c1
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by f07qrf, packed storage
Names: f07qsf; nagf_lapacklin_zsptrs; zsptrs
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; ZSPTRS
GAMS: D2c1
Estimate condition number of complex symmetric matrix, matrix already factorized by f07qrc, packed storage
Names: f07quc; nag_zspcon; zspcon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSPCON
GAMS: D2c1
Estimate condition number of complex symmetric matrix, matrix already factorized by f07qrf, packed storage
Names: f07quf; nagf_lapacklin_zspcon; zspcon
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; condition number, matrix; diagonal pivoting method; ZSPCON
GAMS: D2c1
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
Names: f07qvc; nag_zsprfs; zsprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSPRFS
GAMS: D2c1
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
Names: f07qvf; nagf_lapacklin_zsprfs; zsprfs
Keywords: backward error; Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; error bound, matrix; forward error; ZSPRFS
GAMS: D2c1
Inverse of complex symmetric matrix, matrix already factorized by f07qrc, packed storage
Names: f07qwc; nag_zsptri; zsptri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSPTRI
GAMS: D2c1
Inverse of complex symmetric matrix, matrix already factorized by f07qrf, packed storage
Names: f07qwf; nagf_lapacklin_zsptri; zsptri
Keywords: Bunch–Kaufman factorization; complex, symmetric matrix; diagonal pivoting method; inverse, matrix; ZSPTRI
GAMS: D2c1
Solution of real triangular system of linear equations, multiple right-hand sides
Names: f07tec; nag_dtrtrs; dtrtrs
Keywords: DTRTRS; finance; real, triangular matrix
GAMS: D2a3
Solution of real triangular system of linear equations, multiple right-hand sides
Names: f07tef; nagf_lapacklin_dtrtrs; dtrtrs
Keywords: DTRTRS; finance; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix
Names: f07tgc; nag_dtrcon; dtrcon
Keywords: condition number, matrix; DTRCON; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix
Names: f07tgf; nagf_lapacklin_dtrcon; dtrcon
Keywords: condition number, matrix; DTRCON; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides
Names: f07thc; nag_dtrrfs; dtrrfs
Keywords: backward error; DTRRFS; error bound, matrix; finance; forward error; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides
Names: f07thf; nagf_lapacklin_dtrrfs; dtrrfs
Keywords: backward error; DTRRFS; error bound, matrix; finance; forward error; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix
Names: f07tjc; nag_dtrtri; dtrtri
Keywords: DTRTRI; finance; inverse, matrix; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix
Names: f07tjf; nagf_lapacklin_dtrtri; dtrtri
Keywords: DTRTRI; finance; inverse, matrix; real, triangular matrix
GAMS: D2a3
Solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tsc; nag_ztrtrs; ztrtrs
Keywords: complex, triangular matrix; ZTRTRS
GAMS: D2c3
Solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tsf; nagf_lapacklin_ztrtrs; ztrtrs
Keywords: complex, triangular matrix; ZTRTRS
GAMS: D2c3
Estimate condition number of complex triangular matrix
Names: f07tuc; nag_ztrcon; ztrcon
Keywords: complex, triangular matrix; condition number, matrix; ZTRCON
GAMS: D2c3
Estimate condition number of complex triangular matrix
Names: f07tuf; nagf_lapacklin_ztrcon; ztrcon
Keywords: complex, triangular matrix; condition number, matrix; ZTRCON
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tvc; nag_ztrrfs; ztrrfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTRRFS
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
Names: f07tvf; nagf_lapacklin_ztrrfs; ztrrfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTRRFS
GAMS: D2c3
Inverse of complex triangular matrix
Names: f07twc; nag_ztrtri; ztrtri
Keywords: complex, triangular matrix; inverse, matrix; ZTRTRI
GAMS: D2c3
Inverse of complex triangular matrix
Names: f07twf; nagf_lapacklin_ztrtri; ztrtri
Keywords: complex, triangular matrix; inverse, matrix; ZTRTRI
GAMS: D2c3
Solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uec; nag_dtptrs; dtptrs
Keywords: DTPTRS; real, triangular matrix
GAMS: D2a3
Solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uef; nagf_lapacklin_dtptrs; dtptrs
Keywords: DTPTRS; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix, packed storage
Names: f07ugc; nag_dtpcon; dtpcon
Keywords: condition number, matrix; DTPCON; real, triangular matrix
GAMS: D2a3
Estimate condition number of real triangular matrix, packed storage
Names: f07ugf; nagf_lapacklin_dtpcon; dtpcon
Keywords: condition number, matrix; DTPCON; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uhc; nag_dtprfs; dtprfs
Keywords: backward error; DTPRFS; error bound, matrix; forward error; real, triangular matrix
GAMS: D2a3
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uhf; nagf_lapacklin_dtprfs; dtprfs
Keywords: backward error; DTPRFS; error bound, matrix; forward error; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix, packed storage
Names: f07ujc; nag_dtptri; dtptri
Keywords: DTPTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix, packed storage
Names: f07ujf; nagf_lapacklin_dtptri; dtptri
Keywords: DTPTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07usc; nag_ztptrs; ztptrs
Keywords: complex, triangular matrix; ZTPTRS
GAMS: D2c3
Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07usf; nagf_lapacklin_ztptrs; ztptrs
Keywords: complex, triangular matrix; ZTPTRS
GAMS: D2c3
Estimate condition number of complex triangular matrix, packed storage
Names: f07uuc; nag_ztpcon; ztpcon
Keywords: complex, triangular matrix; condition number, matrix; ZTPCON
GAMS: D2c3
Estimate condition number of complex triangular matrix, packed storage
Names: f07uuf; nagf_lapacklin_ztpcon; ztpcon
Keywords: complex, triangular matrix; condition number, matrix; ZTPCON
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uvc; nag_ztprfs; ztprfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTPRFS
GAMS: D2c3
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
Names: f07uvf; nagf_lapacklin_ztprfs; ztprfs
Keywords: backward error; complex, triangular matrix; error bound, matrix; forward error; ZTPRFS
GAMS: D2c3
Inverse of complex triangular matrix, packed storage
Names: f07uwc; nag_ztptri; ztptri
Keywords: complex, triangular matrix; inverse, matrix; ZTPTRI
GAMS: D2c3
Inverse of complex triangular matrix, packed storage
Names: f07uwf; nagf_lapacklin_ztptri; ztptri
Keywords: complex, triangular matrix; inverse, matrix; ZTPTRI
GAMS: D2c3
Solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vec; nag_dtbtrs; dtbtrs
Keywords: DTBTRS; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vef; nagf_lapacklin_dtbtrs; dtbtrs
Keywords: DTBTRS; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Estimate condition number of real band triangular matrix
Names: f07vgc; nag_dtbcon; dtbcon
Keywords: condition number, matrix; DTBCON; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Estimate condition number of real band triangular matrix
Names: f07vgf; nagf_lapacklin_dtbcon; dtbcon
Keywords: condition number, matrix; DTBCON; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vhc; nag_dtbrfs; dtbrfs
Keywords: backward error; DTBRFS; error bound, matrix; forward error; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides
Names: f07vhf; nagf_lapacklin_dtbrfs; dtbrfs
Keywords: backward error; DTBRFS; error bound, matrix; forward error; matrix, band; real, band, triangular matrix
GAMS: D2a2, D2a3
Solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vsc; nag_ztbtrs; ztbtrs
Keywords: complex, band, triangular matrix; matrix, band; ZTBTRS
GAMS: D2c2, D2c3
Solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vsf; nagf_lapacklin_ztbtrs; ztbtrs
Keywords: complex, band, triangular matrix; matrix, band; ZTBTRS
GAMS: D2c2, D2c3
Estimate condition number of complex band triangular matrix
Names: f07vuc; nag_ztbcon; ztbcon
Keywords: complex, band, triangular matrix; condition number, matrix; matrix, band; ZTBCON
GAMS: D2c3, D2c2
Estimate condition number of complex band triangular matrix
Names: f07vuf; nagf_lapacklin_ztbcon; ztbcon
Keywords: complex, band, triangular matrix; condition number, matrix; matrix, band; ZTBCON
GAMS: D2c3, D2c2
Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vvc; nag_ztbrfs; ztbrfs
Keywords: backward error; complex, band, triangular matrix; error bound, matrix; forward error; matrix, band; ZTBRFS
GAMS: D2c2, D2c3
Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
Names: f07vvf; nagf_lapacklin_ztbrfs; ztbrfs
Keywords: backward error; complex, band, triangular matrix; error bound, matrix; forward error; matrix, band; ZTBRFS
GAMS: D2c2, D2c3
Cholesky factorization of real symmetric positive definite matrix, Rectangular Full Packed format
Names: f07wdc; nag_dpftrf; dpftrf
Keywords: Cholesky decomposition; DPFTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Cholesky factorization of real symmetric positive definite matrix, Rectangular Full Packed format
Names: f07wdf; nagf_lapacklin_dpftrf; dpftrf
Keywords: Cholesky decomposition; DPFTRF; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by f07wdc, Rectangular Full Packed format
Names: f07wec; nag_dpftrs; dpftrs
Keywords: Cholesky decomposition; DPFTRS; real, positive definite, symmetric matrix
GAMS: D2b1b
Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by f07wdf, Rectangular Full Packed format
Names: f07wef; nagf_lapacklin_dpftrs; dpftrs
Keywords: Cholesky decomposition; DPFTRS; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by f07wdc, Rectangular Full Packed format
Names: f07wjc; nag_dpftri; dpftri
Keywords: Cholesky decomposition; DPETRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real symmetric positive definite matrix, matrix already factorized by f07wdf, Rectangular Full Packed format
Names: f07wjf; nagf_lapacklin_dpftri; dpftri
Keywords: Cholesky decomposition; DPETRI; inverse, matrix; real, positive definite, symmetric matrix
GAMS: D2b1b
Inverse of real triangular matrix, Rectangular Full Packed format
Names: f07wkc; nag_dtftri; dtftri
Keywords: DTFTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Inverse of real triangular matrix, Rectangular Full Packed format
Names: f07wkf; nagf_lapacklin_dtftri; dtftri
Keywords: DTFTRI; inverse, matrix; real, triangular matrix
GAMS: D2a3
Cholesky factorization of complex Hermitian positive definite matrix, Rectangular Full Packed format
Names: f07wrc; nag_zpftrf; zpftrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRF
GAMS: D2d1b
Cholesky factorization of complex Hermitian positive definite matrix, Rectangular Full Packed format
Names: f07wrf; nagf_lapacklin_zpftrf; zpftrf
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRF
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by f07wrc, Rectangular Full Packed format
Names: f07wsc; nag_zpftrs; zpftrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRS
GAMS: D2d1b
Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by f07wrf, Rectangular Full Packed format
Names: f07wsf; nagf_lapacklin_zpftrs; zpftrs
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPFTRS
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07wrc, Rectangular Full Packed format
Names: f07wwc; nag_zpftri; zpftri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPETRI
GAMS: D2d1b
Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07wrf, Rectangular Full Packed format
Names: f07wwf; nagf_lapacklin_zpftri; zpftri
Keywords: Cholesky decomposition; complex, Hermitian, positive definite matrix; ZPETRI
GAMS: D2d1b
Inverse of complex triangular matrix, Rectangular Full Packed format
Names: f07wxc; nag_ztftri; ztftri
Keywords: complex, triangular matrix; inverse, matrix; ZTFTRI
GAMS: D2c3
Inverse of complex triangular matrix, Rectangular Full Packed format
Names: f07wxf; nagf_lapacklin_ztftri; ztftri
Keywords: complex, triangular matrix; inverse, matrix; ZTFTRI
GAMS: D2c3
Solves a real linear least squares problem of full rank
Names: f08aac; nag_dgels; dgels
Keywords: DGELS; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; real, m×n matrix; underdetermined linear system
GAMS: D9a1
Solves a real linear least squares problem of full rank
Names: f08aaf; nagf_lapackeig_dgels; dgels
Keywords: DGELS; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; real, m×n matrix; underdetermined linear system
GAMS: D9a1
Performs a QR factorization of real general rectangular matrix, with explicit blocking
Names: f08abc; nag_dgeqrt; dgeqrt
Keywords: DGEQRT; explicit blocking; QR factorization; real, m by n matrix; recursive QR
GAMS: D5
Performs a QR factorization of real general rectangular matrix, with explicit blocking
Names: f08abf; nagf_lapackeig_dgeqrt; dgeqrt
Keywords: DGEQRT; explicit blocking; QR factorization; real, m by n matrix; recursive QR
GAMS: D5
Applies the orthogonal transformation determined by f08abc
Names: f08acc; nag_dgemqrt; dgemqrt
Keywords: DGEMQRT; explicit blocking; orthogonal transformations; QR factorization; recursive QR
GAMS: D5
Applies the orthogonal transformation determined by f08abf
Names: f08acf; nagf_lapackeig_dgemqrt; dgemqrt
Keywords: DGEMQRT; explicit blocking; orthogonal transformations; QR factorization; recursive QR
GAMS: D5
Performs a QR factorization of real general rectangular matrix
Names: f08aec; nag_dgeqrf; dgeqrf
Keywords: DGEQRF; finance; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Performs a QR factorization of real general rectangular matrix
Names: f08aef; nagf_lapackeig_dgeqrf; dgeqrf
Keywords: DGEQRF; finance; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Forms all or part of orthogonal Q from QR factorization determined by f08aec, f08bec or f08bfc
Names: f08afc; nag_dorgqr; dorgqr
Keywords: DORGQR; LAPACK; orthogonal matrix, generation; orthogonal transformations; QR factorization
GAMS: D5
Forms all or part of orthogonal Q from QR factorization determined by f08aef, f08bef or f08bff
Names: f08aff; nagf_lapackeig_dorgqr; dorgqr
Keywords: DORGQR; LAPACK; orthogonal matrix, generation; orthogonal transformations; QR factorization
GAMS: D5
Applies an orthogonal transformation determined by f08aec, f08bec or f08bfc
Names: f08agc; nag_dormqr; dormqr
Keywords: DORMQR; finance; LAPACK; orthogonal transformations; QR factorization
GAMS: D5
Applies an orthogonal transformation determined by f08aef, f08bef or f08bff
Names: f08agf; nagf_lapackeig_dormqr; dormqr
Keywords: DORMQR; finance; LAPACK; orthogonal transformations; QR factorization
GAMS: D5
Performs a LQ factorization of real general rectangular matrix
Names: f08ahc; nag_dgelqf; dgelqf
Keywords: DGELQF; LAPACK; LQ factorization; real, m×n matrix
GAMS: D5
Performs a LQ factorization of real general rectangular matrix
Names: f08ahf; nagf_lapackeig_dgelqf; dgelqf
Keywords: DGELQF; LAPACK; LQ factorization; real, m×n matrix
GAMS: D5
Forms all or part of orthogonal Q from LQ factorization determined by f08ahc
Names: f08ajc; nag_dorglq; dorglq
Keywords: DORGLQ; LAPACK; LQ factorization; orthogonal matrix, generation; orthogonal transformations
GAMS: D5
Forms all or part of orthogonal Q from LQ factorization determined by f08ahf
Names: f08ajf; nagf_lapackeig_dorglq; dorglq
Keywords: DORGLQ; LAPACK; LQ factorization; orthogonal matrix, generation; orthogonal transformations
GAMS: D5
Applies the orthogonal transformation determined by f08ahc
Names: f08akc; nag_dormlq; dormlq
Keywords: DORMLQ; LAPACK; LQ factorization; orthogonal transformations
GAMS: D5
Applies the orthogonal transformation determined by f08ahf
Names: f08akf; nagf_lapackeig_dormlq; dormlq
Keywords: DORMLQ; LAPACK; LQ factorization; orthogonal transformations
GAMS: D5
Solves a complex linear least problem of full rank
Names: f08anc; nag_zgels; zgels
Keywords: complex, m×n matrix; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; underdetermined linear system; ZGELS
GAMS: D9a1
Solves a complex linear least problem of full rank
Names: f08anf; nagf_lapackeig_zgels; zgels
Keywords: complex, m×n matrix; finance; LAPACK; linear least squares; LQ decomposition; overdetermined linear equations; QR factorization; underdetermined linear system; ZGELS
GAMS: D9a1
Performs a QR factorization of complex general rectangular matrix using recursive algorithm
Names: f08apc; nag_zgeqrt; zgeqrt
Keywords: complex, m by n matrix; explicit blocking; QR factorization; recursive QR; ZGEQRT
GAMS: D5
Performs a QR factorization of complex general rectangular matrix using recursive algorithm
Names: f08apf; nagf_lapackeig_zgeqrt; zgeqrt
Keywords: complex, m by n matrix; explicit blocking; QR factorization; recursive QR; ZGEQRT
GAMS: D5
Applies the unitary transformation determined by f08apc
Names: f08aqc; nag_zgemqrt; zgemqrt
Keywords: explicit blocking; QR factorization; recursive QR; unitary transformations; ZGEMQRT
GAMS: D5
Applies the unitary transformation determined by f08apf
Names: f08aqf; nagf_lapackeig_zgemqrt; zgemqrt
Keywords: explicit blocking; QR factorization; recursive QR; unitary transformations; ZGEMQRT
GAMS: D5
Performs a QR factorization of complex general rectangular matrix
Names: f08asc; nag_zgeqrf; zgeqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQRF
GAMS: D5
Performs a QR factorization of complex general rectangular matrix
Names: f08asf; nagf_lapackeig_zgeqrf; zgeqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQRF
GAMS: D5
Forms all or part of unitary Q from QR factorization determined by f08asc, f08bsc or f08btc
Names: f08atc; nag_zungqr; zungqr
Keywords: LAPACK; QR factorization; unitary matrix, generation; unitary transformations; ZUNGQR
GAMS: D5
Forms all or part of unitary Q from QR factorization determined by f08asf, f08bsf or f08btf
Names: f08atf; nagf_lapackeig_zungqr; zungqr
Keywords: LAPACK; QR factorization; unitary matrix, generation; unitary transformations; ZUNGQR
GAMS: D5
Applies a unitary transformation determined by f08asc, f08bsc or f08btc
Names: f08auc; nag_zunmqr; zunmqr
Keywords: LAPACK; QR factorization; unitary transformations; ZUNMQR
GAMS: D5
Applies a unitary transformation determined by f08asf, f08bsf or f08btf
Names: f08auf; nagf_lapackeig_zunmqr; zunmqr
Keywords: LAPACK; QR factorization; unitary transformations; ZUNMQR
GAMS: D5
Performs a LQ factorization of complex general rectangular matrix
Names: f08avc; nag_zgelqf; zgelqf
Keywords: complex, m×n matrix; LAPACK; LQ factorization; ZGELQF
GAMS: D5
Performs a LQ factorization of complex general rectangular matrix
Names: f08avf; nagf_lapackeig_zgelqf; zgelqf
Keywords: complex, m×n matrix; LAPACK; LQ factorization; ZGELQF
GAMS: D5
Forms all or part of unitary Q from LQ factorization determined by f08avc
Names: f08awc; nag_zunglq; zunglq
Keywords: LAPACK; LQ factorization; unitary matrix, generation; unitary transformations; ZUNGLQ
GAMS: D5
Forms all or part of unitary Q from LQ factorization determined by f08avf
Names: f08awf; nagf_lapackeig_zunglq; zunglq
Keywords: LAPACK; LQ factorization; unitary matrix, generation; unitary transformations; ZUNGLQ
GAMS: D5
Applies the unitary transformation determined by f08avc
Names: f08axc; nag_zunmlq; zunmlq
Keywords: LAPACK; LQ factorization; unitary transformations; ZUNMLQ
GAMS: D5
Applies the unitary transformation determined by f08avf
Names: f08axf; nagf_lapackeig_zunmlq; zunmlq
Keywords: LAPACK; LQ factorization; unitary transformations; ZUNMLQ
GAMS: D5
Computes the minimum-norm solution to a real linear least squares problem
Names: f08bac; nag_dgelsy; dgelsy
Keywords: DGELSY; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem
Names: f08baf; nagf_lapackeig_dgelsy; dgelsy
Keywords: DGELSY; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix
GAMS: D9a1
QR factorization of real general triangular-pentagonal matrix
Names: f08bbc; nag_dtpqrt; dtpqrt
Keywords: DTPQRT; explicit blocking; QR factorization; real, triangular-pentagonal matrix; recursive QR
GAMS: D5
QR factorization of real general triangular-pentagonal matrix
Names: f08bbf; nagf_lapackeig_dtpqrt; dtpqrt
Keywords: DTPQRT; explicit blocking; QR factorization; real, triangular-pentagonal matrix; recursive QR
GAMS: D5
Applies the orthogonal transformation determined by f08bbc
Names: f08bcc; nag_dtpmqrt; dtpmqrt
Keywords: DTPMQRT; explicit blocking; orthogonal transformations; QR factorization; recursive QR
GAMS: D5
Applies the orthogonal transformation determined by f08bbf
Names: f08bcf; nagf_lapackeig_dtpmqrt; dtpmqrt
Keywords: DTPMQRT; explicit blocking; orthogonal transformations; QR factorization; recursive QR
GAMS: D5
QR factorization, with column pivoting, of real general rectangular matrix
Names: f08bec; nag_dgeqpf; dgeqpf
Keywords: DGEQPF; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
QR factorization, with column pivoting, of real general rectangular matrix
Names: f08bef; nagf_lapackeig_dgeqpf; dgeqpf
Keywords: DGEQPF; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of real general rectangular matrix
Names: f08bfc; nag_dgeqp3; dgeqp3
Keywords: DGEQP3; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of real general rectangular matrix
Names: f08bff; nagf_lapackeig_dgeqp3; dgeqp3
Keywords: DGEQP3; finance; LAPACK; orthogonal transformations; QR factorization; real, m×n matrix
GAMS: D5
Reduces a real upper trapezoidal matrix to upper triangular form
Names: f08bhc; nag_dtzrzf; dtzrzf
Keywords: DTZRZF; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; orthogonal transformations; real, trapezoidal matrix
GAMS: D5
Reduces a real upper trapezoidal matrix to upper triangular form
Names: f08bhf; nagf_lapackeig_dtzrzf; dtzrzf
Keywords: DTZRZF; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; orthogonal transformations; real, trapezoidal matrix
GAMS: D5
Applies the orthogonal transformation determined by f08bhc
Names: f08bkc; nag_dormrz; dormrz
Keywords: DORMRZ; LAPACK; orthogonal transformations
GAMS: D5
Applies the orthogonal transformation determined by f08bhf
Names: f08bkf; nagf_lapackeig_dormrz; dormrz
Keywords: DORMRZ; LAPACK; orthogonal transformations
GAMS: D5
Computes the minimum-norm solution to a complex linear least squares problem
Names: f08bnc; nag_zgelsy; zgelsy
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; ZGELSY
GAMS: D9a1
Computes the minimum-norm solution to a complex linear least squares problem
Names: f08bnf; nagf_lapackeig_zgelsy; zgelsy
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; ZGELSY
GAMS: D9a1
QR factorization of complex triangular-pentagonal matrix
Names: f08bpc; nag_ztpqrt; ztpqrt
Keywords: complex, triangular-pentagonal matrix; explicit blocking; QR factorization; recursive QR; ZTPQRT
GAMS: D5
QR factorization of complex triangular-pentagonal matrix
Names: f08bpf; nagf_lapackeig_ztpqrt; ztpqrt
Keywords: complex, triangular-pentagonal matrix; explicit blocking; QR factorization; recursive QR; ZTPQRT
GAMS: D5
Applies the unitary transformation determined by f08bpc
Names: f08bqc; nag_ztpmqrt; ztpmqrt
Keywords: explicit blocking; QR factorization; recursive QR; unitary transformations; ZTPMQRT
GAMS: D5
Applies the unitary transformation determined by f08bpf
Names: f08bqf; nagf_lapackeig_ztpmqrt; ztpmqrt
Keywords: explicit blocking; QR factorization; recursive QR; unitary transformations; ZTPMQRT
GAMS: D5
QR factorization, with column pivoting, of complex general rectangular matrix
Names: f08bsc; nag_zgeqpf; zgeqpf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQPF
GAMS: D5
QR factorization, with column pivoting, of complex general rectangular matrix
Names: f08bsf; nagf_lapackeig_zgeqpf; zgeqpf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQPF
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of complex general rectangular matrix
Names: f08btc; nag_zgeqp3; zgeqp3
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQP3
GAMS: D5
QR factorization, with column pivoting, using BLAS-3, of complex general rectangular matrix
Names: f08btf; nagf_lapackeig_zgeqp3; zgeqp3
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGEQP3
GAMS: D5
Reduces a complex upper trapezoidal matrix to upper triangular form
Names: f08bvc; nag_ztzrzf; ztzrzf
Keywords: complex, trapezoidal matrix; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; ZTZRZF
GAMS: D5
Reduces a complex upper trapezoidal matrix to upper triangular form
Names: f08bvf; nagf_lapackeig_ztzrzf; ztzrzf
Keywords: complex, trapezoidal matrix; LAPACK; matrix, upper trapezoidal; matrix, upper triangular; ZTZRZF
GAMS: D5
Applies the unitary transformation determined by f08bvc
Names: f08bxc; nag_zunmrz; zunmrz
Keywords: LAPACK; unitary transformations; ZUNMRZ
GAMS: D5
Applies the unitary transformation determined by f08bvf
Names: f08bxf; nagf_lapackeig_zunmrz; zunmrz
Keywords: LAPACK; unitary transformations; ZUNMRZ
GAMS: D5
QL factorization of real general rectangular matrix
Names: f08cec; nag_dgeqlf; dgeqlf
Keywords: DGEQLF; LAPACK; QL factorization; real, m×n matrix
GAMS: D5
QL factorization of real general rectangular matrix
Names: f08cef; nagf_lapackeig_dgeqlf; dgeqlf
Keywords: DGEQLF; LAPACK; QL factorization; real, m×n matrix
GAMS: D5
Form all or part of orthogonal Q from QL factorization determined by f08cec
Names: f08cfc; nag_dorgql; dorgql
Keywords: DORGQL; LAPACK; orthogonal matrix, generation; orthogonal transformations; QL factorization
GAMS: D5
Form all or part of orthogonal Q from QL factorization determined by f08cef
Names: f08cff; nagf_lapackeig_dorgql; dorgql
Keywords: DORGQL; LAPACK; orthogonal matrix, generation; orthogonal transformations; QL factorization
GAMS: D5
Applies the orthogonal transformation determined by f08cec
Names: f08cgc; nag_dormql; dormql
Keywords: DORMQL; LAPACK; orthogonal transformations; QL factorization
GAMS: D5
Applies the orthogonal transformation determined by f08cef
Names: f08cgf; nagf_lapackeig_dormql; dormql
Keywords: DORMQL; LAPACK; orthogonal transformations; QL factorization
GAMS: D5
RQ factorization of real general rectangular matrix
Names: f08chc; nag_dgerqf; dgerqf
Keywords: DGERQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
RQ factorization of real general rectangular matrix
Names: f08chf; nagf_lapackeig_dgerqf; dgerqf
Keywords: DGERQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
Form all or part of orthogonal Q from RQ factorization determined by f08chc
Names: f08cjc; nag_dorgrq; dorgrq
Keywords: DORGRQ; LAPACK; orthogonal matrix, generation; orthogonal transformations; RQ factorizations
GAMS: D5
Form all or part of orthogonal Q from RQ factorization determined by f08chf
Names: f08cjf; nagf_lapackeig_dorgrq; dorgrq
Keywords: DORGRQ; LAPACK; orthogonal matrix, generation; orthogonal transformations; RQ factorizations
GAMS: D5
Applies the orthogonal transformation determined by f08chc
Names: f08ckc; nag_dormrq; dormrq
Keywords: DORGRQ; LAPACK; orthogonal transformations; RQ factorizations
GAMS: D5
Applies the orthogonal transformation determined by f08chf
Names: f08ckf; nagf_lapackeig_dormrq; dormrq
Keywords: DORGRQ; LAPACK; orthogonal transformations; RQ factorizations
GAMS: D5
QL factorization of complex general rectangular matrix
Names: f08csc; nag_zgeqlf; zgeqlf
Keywords: complex, m×n matrix; LAPACK; QL factorization; ZGEQLF
GAMS: D5
QL factorization of complex general rectangular matrix
Names: f08csf; nagf_lapackeig_zgeqlf; zgeqlf
Keywords: complex, m×n matrix; LAPACK; QL factorization; ZGEQLF
GAMS: D5
Form all or part of unitary Q from QL factorization determined by f08csc
Names: f08ctc; nag_zungql; zungql
Keywords: LAPACK; QL factorization; unitary matrix, generation; unitary transformations; ZUNGQL
GAMS: D5
Form all or part of unitary Q from QL factorization determined by f08csf
Names: f08ctf; nagf_lapackeig_zungql; zungql
Keywords: LAPACK; QL factorization; unitary matrix, generation; unitary transformations; ZUNGQL
GAMS: D5
Applies the unitary transformation determined by f08csc
Names: f08cuc; nag_zunmql; zunmql
Keywords: LAPACK; QL factorization; unitary transformations; ZUNMQL
GAMS: D5
Applies the unitary transformation determined by f08csf
Names: f08cuf; nagf_lapackeig_zunmql; zunmql
Keywords: LAPACK; QL factorization; unitary transformations; ZUNMQL
GAMS: D5
RQ factorization of complex general rectangular matrix
Names: f08cvc; nag_zgerqf; zgerqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGERQF
GAMS: D5
RQ factorization of complex general rectangular matrix
Names: f08cvf; nagf_lapackeig_zgerqf; zgerqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGERQF
GAMS: D5
Form all or part of unitary Q from RQ factorization determined by f08cvc
Names: f08cwc; nag_zungrq; zungrq
Keywords: LAPACK; RQ factorizations; unitary matrix, generation; unitary transformations; ZUNGRQ
GAMS: D5
Form all or part of unitary Q from RQ factorization determined by f08cvf
Names: f08cwf; nagf_lapackeig_zungrq; zungrq
Keywords: LAPACK; RQ factorizations; unitary matrix, generation; unitary transformations; ZUNGRQ
GAMS: D5
Applies the unitary transformation determined by f08cvc
Names: f08cxc; nag_zunmrq; zunmrq
Keywords: LAPACK; RQ factorizations; unitary transformations; ZUNMRQ
GAMS: D5
Applies the unitary transformation determined by f08cvf
Names: f08cxf; nagf_lapackeig_zunmrq; zunmrq
Keywords: LAPACK; RQ factorizations; unitary transformations; ZUNMRQ
GAMS: D5
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fac; nag_dsyev; dsyev
Keywords: DSYEV; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08faf; nagf_lapackeig_dsyev; dsyev
Keywords: DSYEV; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fbc; nag_dsyevx; dsyevx
Keywords: DSYEVX; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix
Names: f08fbf; nagf_lapackeig_dsyevx; dsyevx
Keywords: DSYEVX; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix (divide-and-conquer)
Names: f08fcc; nag_dsyevd; dsyevd
Keywords: divide-and-conquer method; DSYEVD; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix (divide-and-conquer)
Names: f08fcf; nagf_lapackeig_dsyevd; dsyevd
Keywords: divide-and-conquer method; DSYEVD; eigenvalues; eigenvectors; finance; LAPACK; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix (Relatively Robust Representations)
Names: f08fdc; nag_dsyevr; dsyevr
Keywords: dqds algorithm; DSYEVR; eigenvalues; eigenvectors; LAPACK; real, indefinite, symmetric matrix; relatively robust representations
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix (Relatively Robust Representations)
Names: f08fdf; nagf_lapackeig_dsyevr; dsyevr
Keywords: dqds algorithm; DSYEVR; eigenvalues; eigenvectors; LAPACK; real, indefinite, symmetric matrix; relatively robust representations
GAMS: D4a1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Names: f08fec; nag_dsytrd; dsytrd
Keywords: DSYTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Names: f08fef; nagf_lapackeig_dsytrd; dsytrd
Keywords: DSYTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by f08fec
Names: f08ffc; nag_dorgtr; dorgtr
Keywords: DORGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by f08fef
Names: f08fff; nagf_lapackeig_dorgtr; dorgtr
Keywords: DORGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1
Applies the orthogonal transformation determined by f08fec
Names: f08fgc; nag_dormtr; dormtr
Keywords: DORMTR; LAPACK; orthogonal transformations
GAMS: D4c4
Applies the orthogonal transformation determined by f08fef
Names: f08fgf; nagf_lapackeig_dormtr; dormtr
Keywords: DORMTR; LAPACK; orthogonal transformations
GAMS: D4c4
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fnc; nag_zheev; zheev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHEEV
GAMS: D4a3
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fnf; nagf_lapackeig_zheev; zheev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHEEV
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fpc; nag_zheevx; zheevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVX
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
Names: f08fpf; nagf_lapackeig_zheevx; zheevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVX
GAMS: D4a3
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix (divide-and-conquer)
Names: f08fqc; nag_zheevd; zheevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVD
GAMS: D4a3, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix (divide-and-conquer)
Names: f08fqf; nagf_lapackeig_zheevd; zheevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; finance; LAPACK; ZHEEVD
GAMS: D4a3, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix (Relatively Robust Representations)
Names: f08frc; nag_zheevr; zheevr
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; relatively robust representations; unitary transformations; ZHEEVR
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix (Relatively Robust Representations)
Names: f08frf; nagf_lapackeig_zheevr; zheevr
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; relatively robust representations; unitary transformations; ZHEEVR
GAMS: D4a3
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Names: f08fsc; nag_zhetrd; zhetrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHETRD
GAMS: D4c1b1
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Names: f08fsf; nagf_lapackeig_zhetrd; zhetrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHETRD
GAMS: D4c1b1
Generate unitary transformation matrix from reduction to tridiagonal form determined by f08fsc
Names: f08ftc; nag_zungtr; zungtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGTR
GAMS: D4c1b1
Generate unitary transformation matrix from reduction to tridiagonal form determined by f08fsf
Names: f08ftf; nagf_lapackeig_zungtr; zungtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGTR
GAMS: D4c1b1
Applies the unitary transformation matrix determined by f08fsc
Names: f08fuc; nag_zunmtr; zunmtr
Keywords: LAPACK; unitary transformations; ZUNMTR
GAMS: D4c4
Applies the unitary transformation matrix determined by f08fsf
Names: f08fuf; nagf_lapackeig_zunmtr; zunmtr
Keywords: LAPACK; unitary transformations; ZUNMTR
GAMS: D4c4
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gac; nag_dspev; dspev
Keywords: DSPEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gaf; nagf_lapackeig_dspev; dspev
Keywords: DSPEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gbc; nag_dspevx; dspevx
Keywords: DSPEVX; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4a1
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
Names: f08gbf; nagf_lapackeig_dspevx; dspevx
Keywords: DSPEVX; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4a1
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gcc; nag_dspevd; dspevd
Keywords: divide-and-conquer method; DSPEVD; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gcf; nagf_lapackeig_dspevd; dspevd
Keywords: divide-and-conquer method; DSPEVD; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; real, indefinite, symmetric matrix
GAMS: D4a1, D4c2a
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
Names: f08gec; nag_dsptrd; dsptrd
Keywords: DSPTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
Names: f08gef; nagf_lapackeig_dsptrd; dsptrd
Keywords: DSPTRD; LAPACK; orthogonal transformations; real, indefinite, symmetric matrix
GAMS: D4c1b1
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by f08gec
Names: f08gfc; nag_dopgtr; dopgtr
Keywords: DOPGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by f08gef
Names: f08gff; nagf_lapackeig_dopgtr; dopgtr
Keywords: DOPGTR; LAPACK; orthogonal matrix, generation; orthogonal transformations
GAMS: D4c1b1
Applies the orthogonal transformation determined by f08gec
Names: f08ggc; nag_dopmtr; dopmtr
Keywords: DOPMTR; LAPACK; orthogonal transformations
GAMS: D4c4
Applies the orthogonal transformation determined by f08gef
Names: f08ggf; nagf_lapackeig_dopmtr; dopmtr
Keywords: DOPMTR; LAPACK; orthogonal transformations
GAMS: D4c4
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gnc; nag_zhpev; zhpev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEV
GAMS: D4a3
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gnf; nagf_lapackeig_zhpev; zhpev
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEV
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gpc; nag_zhpevx; zhpevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEVX
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix, packed storage
Names: f08gpf; nagf_lapackeig_zhpevx; zhpevx
Keywords: complex, Hermitian, indefinite matrix; eigenvalues; eigenvectors; LAPACK; ZHPEVX
GAMS: D4a3
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gqc; nag_zhpevd; zhpevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; ZHPEVD
GAMS: D4a3, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian matrix, packed storage (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08gqf; nagf_lapackeig_zhpevd; zhpevd
Keywords: complex, Hermitian, indefinite matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; Pal–Walker–Kahan (QL or QR) algorithm; ZHPEVD
GAMS: D4a3, D4c2a
Performs a unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
Names: f08gsc; nag_zhptrd; zhptrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHPTRD
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
Names: f08gsf; nagf_lapackeig_zhptrd; zhptrd
Keywords: complex, Hermitian, indefinite matrix; LAPACK; unitary transformations; ZHPTRD
GAMS: D4c1b1
Generates a unitary transformation matrix from reduction to tridiagonal form determined by f08gsc
Names: f08gtc; nag_zupgtr; zupgtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUPGTR
GAMS: D4c1b1
Generates a unitary transformation matrix from reduction to tridiagonal form determined by f08gsf
Names: f08gtf; nagf_lapackeig_zupgtr; zupgtr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUPGTR
GAMS: D4c1b1
Applies the unitary transformation matrix determined by f08gsc
Names: f08guc; nag_zupmtr; zupmtr
Keywords: LAPACK; unitary transformations; ZUPGTR
GAMS: D4c4
Applies the unitary transformation matrix determined by f08gsf
Names: f08guf; nagf_lapackeig_zupmtr; zupmtr
Keywords: LAPACK; unitary transformations; ZUPGTR
GAMS: D4c4
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hac; nag_dsbev; dsbev
Keywords: DSBEV; LAPACK; matrix, band; QR algorithm; real, band, symmetric matrix
GAMS: D4a6
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08haf; nagf_lapackeig_dsbev; dsbev
Keywords: DSBEV; LAPACK; matrix, band; QR algorithm; real, band, symmetric matrix
GAMS: D4a6
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hbc; nag_dsbevx; dsbevx
Keywords: DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; real, band, symmetric matrix
GAMS: D4a6
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix
Names: f08hbf; nagf_lapackeig_dsbevx; dsbevx
Keywords: DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; real, band, symmetric matrix
GAMS: D4a6
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric band matrix (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08hcc; nag_dsbevd; dsbevd
Keywords: divide-and-conquer method; DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, band, symmetric matrix
GAMS: D4a1, D4a6
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric band matrix (divide-and-conquer or Pal–Walker–Kahan variant of the QL or QR algorithm)
Names: f08hcf; nagf_lapackeig_dsbevd; dsbevd
Keywords: divide-and-conquer method; DSBEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, band, symmetric matrix
GAMS: D4a1, D4a6
Performs an orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
Names: f08hec; nag_dsbtrd; dsbtrd
Keywords: DSBTRD; LAPACK; matrix, band; orthogonal transformations; real, band, symmetric matrix
GAMS: D4c1b1
Performs an orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
Names: f08hef; nagf_lapackeig_dsbtrd; dsbtrd
Keywords: DSBTRD; LAPACK; matrix, band; orthogonal transformations; real, band, symmetric matrix
GAMS: D4c1b1
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hnc; nag_zhbev; zhbev
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; QR algorithm; unitary transformations; ZHBEV
GAMS: D4a3
Computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hnf; nagf_lapackeig_zhbev; zhbev
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; QR algorithm; unitary transformations; ZHBEV
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hpc; nag_zhbevx; zhbevx
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBEVX
GAMS: D4a3
Computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix
Names: f08hpf; nagf_lapackeig_zhbevx; zhbevx
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBEVX
GAMS: D4a3
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian band matrix (divide-and-conquer)
Names: f08hqc; nag_zhbevd; zhbevd
Keywords: complex, band, Hermitian matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; ZHBEVD
GAMS: D4a3, D4a6
Computes all eigenvalues and, optionally, all eigenvectors of complex Hermitian band matrix (divide-and-conquer)
Names: f08hqf; nagf_lapackeig_zhbevd; zhbevd
Keywords: complex, band, Hermitian matrix; divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; ZHBEVD
GAMS: D4a3, D4a6
Performs a unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
Names: f08hsc; nag_zhbtrd; zhbtrd
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBTRD
GAMS: D4c1b1
Performs a unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
Names: f08hsf; nagf_lapackeig_zhbtrd; zhbtrd
Keywords: complex, band, Hermitian matrix; LAPACK; matrix, band; unitary transformations; ZHBTRD
GAMS: D4c1b1
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jac; nag_dstev; dstev
Keywords: DSTEV; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jaf; nagf_lapackeig_dstev; dstev
Keywords: DSTEV; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jbc; nag_dstevx; dstevx
Keywords: bisection method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix
Names: f08jbf; nagf_lapackeig_dstevx; dstevx
Keywords: bisection method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric tridiagonal matrix (divide-and-conquer)
Names: f08jcc; nag_dstevd; dstevd
Keywords: divide-and-conquer method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, all eigenvectors of real symmetric tridiagonal matrix (divide-and-conquer)
Names: f08jcf; nagf_lapackeig_dstevd; dstevd
Keywords: divide-and-conquer method; DSTEVX; eigenvalues; eigenvectors; LAPACK; matrix, band; Pal–Walker–Kahan (QL or QR) algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix (Relatively Robust Representations)
Names: f08jdc; nag_dstevr; dstevr
Keywords: dqds algorithm; DSTEVR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix (Relatively Robust Representations)
Names: f08jdf; nagf_lapackeig_dstevr; dstevr
Keywords: dqds algorithm; DSTEVR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using the implicit QL or QR algorithm
Names: f08jec; nag_dsteqr; dsteqr
Keywords: DSTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using the implicit QL or QR algorithm
Names: f08jef; nagf_lapackeig_dsteqr; dsteqr
Keywords: DSTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from real symmetric positive definite matrix
Names: f08jgc; nag_dpteqr; dpteqr
Keywords: DPTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from real symmetric positive definite matrix
Names: f08jgf; nagf_lapackeig_dpteqr; dpteqr
Keywords: DPTEQR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a matrix reduced to this form (divide-and-conquer)
Names: f08jhc; nag_dstedc; dstedc
Keywords: divide-and-conquer method; DSTEDC; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a matrix reduced to this form (divide-and-conquer)
Names: f08jhf; nagf_lapackeig_dstedc; dstedc
Keywords: divide-and-conquer method; DSTEDC; eigenvalues; eigenvectors; LAPACK; matrix, band; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues of real symmetric tridiagonal matrix by bisection
Names: f08jjc; nag_dstebz; dstebz
Keywords: bisection method; DSTEBZ; eigenvalues; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvalues of real symmetric tridiagonal matrix by bisection
Names: f08jjf; nagf_lapackeig_dstebz; dstebz
Keywords: bisection method; DSTEBZ; eigenvalues; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c2a
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
Names: f08jkc; nag_dstein; dstein
Keywords: DSTEIN; eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
Names: f08jkf; nagf_lapackeig_dstein; dstein
Keywords: DSTEIN; eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix
GAMS: D4a5, D4c3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a symmetric matrix reduced to this form (Relatively Robust Representations)
Names: f08jlc; nag_dstegr; dstegr
Keywords: dqds algorithm; DSTEGR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5, D4c2a
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a symmetric matrix reduced to this form (Relatively Robust Representations)
Names: f08jlf; nagf_lapackeig_dstegr; dstegr
Keywords: dqds algorithm; DSTEGR; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using the implicit QL or QR algorithm
Names: f08jsc; nag_zsteqr; zsteqr
Keywords: eigenvalues; eigenvectors; LAPACK; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEQR
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using the implicit QL or QR algorithm
Names: f08jsf; nagf_lapackeig_zsteqr; zsteqr
Keywords: eigenvalues; eigenvectors; LAPACK; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEQR
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from complex Hermitian positive definite matrix
Names: f08juc; nag_zpteqr; zpteqr
Keywords: eigenvalues; eigenvectors; LAPACK; LDLH decomposition; real, symmetric, tridiagonal matrix; ZPTEQR
GAMS: D4a5, D4c2a
Computes all eigenvalues and eigenvectors of real symmetric positive definite tridiagonal matrix, reduced from complex Hermitian positive definite matrix
Names: f08juf; nagf_lapackeig_zpteqr; zpteqr
Keywords: eigenvalues; eigenvectors; LAPACK; LDLH decomposition; real, symmetric, tridiagonal matrix; ZPTEQR
GAMS: D4a5, D4c2a
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (divide-and-conquer)
Names: f08jvc; nag_zstedc; zstedc
Keywords: divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEDC
GAMS: D4c2a, D4a5, D4a3
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (divide-and-conquer)
Names: f08jvf; nagf_lapackeig_zstedc; zstedc
Keywords: divide-and-conquer method; eigenvalues; eigenvectors; LAPACK; QL algorithm; QR algorithm; real, symmetric, tridiagonal matrix; ZSTEDC
GAMS: D4c2a, D4a5, D4a3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
Names: f08jxc; nag_zstein; zstein
Keywords: eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; ZSTEIN
GAMS: D4c3
Computes selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
Names: f08jxf; nagf_lapackeig_zstein; zstein
Keywords: eigenvectors; inverse iteration; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; ZSTEIN
GAMS: D4c3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (Relatively Robust Representations)
Names: f08jyc; nag_zstegr; zstegr
Keywords: dqds algorithm; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations; ZSTEGR
GAMS: D4c2a, D4a5, D4a3
Computes selected eigenvalues and, optionally, the corresponding eigenvectors of a real symmetric tridiagonal matrix or a complex Hermitian matrix reduced to this form (Relatively Robust Representations)
Names: f08jyf; nagf_lapackeig_zstegr; zstegr
Keywords: dqds algorithm; eigenvalues; eigenvectors; LAPACK; matrix, band; real, symmetric, tridiagonal matrix; relatively robust representations; ZSTEGR
GAMS: D4c2a, D4a5, D4a3
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition
Names: f08kac; nag_dgelss; dgelss
Keywords: DGELSS; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition
Names: f08kaf; nagf_lapackeig_dgelss; dgelss
Keywords: DGELSS; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f08kbc; nag_dgesvd; dgesvd
Keywords: DGESVD; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f08kbf; nagf_lapackeig_dgesvd; dgesvd
Keywords: DGESVD; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kcc; nag_dgelsd; dgelsd
Keywords: DGELSD; divide-and-conquer method; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the minimum-norm solution to a real linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kcf; nagf_lapackeig_dgelsd; dgelsd
Keywords: DGELSD; divide-and-conquer method; finance; LAPACK; linear least squares; minimal least squares; real, m×n matrix; SVD, singular value decomposition
GAMS: D9a1
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08kdc; nag_dgesdd; dgesdd
Keywords: DGESDD; divide-and-conquer method; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08kdf; nagf_lapackeig_dgesdd; dgesdd
Keywords: DGESDD; divide-and-conquer method; finance; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Performs an orthogonal reduction of real general rectangular matrix to bidiagonal form
Names: f08kec; nag_dgebrd; dgebrd
Keywords: DGEBRD; LAPACK; orthogonal transformations; real, m×n matrix
GAMS: D6
Performs an orthogonal reduction of real general rectangular matrix to bidiagonal form
Names: f08kef; nagf_lapackeig_dgebrd; dgebrd
Keywords: DGEBRD; LAPACK; orthogonal transformations; real, m×n matrix
GAMS: D6
Generates an orthogonal transformation matrices from reduction to bidiagonal form determined by f08kec
Names: f08kfc; nag_dorgbr; dorgbr
Keywords: DORGBR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation; orthogonal transformations
GAMS: D6
Generates an orthogonal transformation matrices from reduction to bidiagonal form determined by f08kef
Names: f08kff; nagf_lapackeig_dorgbr; dorgbr
Keywords: DORGBR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation; orthogonal transformations
GAMS: D6
Applies the orthogonal transformations from reduction to bidiagonal form determined by f08kec
Names: f08kgc; nag_dormbr; dormbr
Keywords: DORMBR; LAPACK; orthogonal transformations
GAMS: D6
Applies the orthogonal transformations from reduction to bidiagonal form determined by f08kef
Names: f08kgf; nagf_lapackeig_dormbr; dormbr
Keywords: DORMBR; LAPACK; orthogonal transformations
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08khc; nag_dgejsv; dgejsv
Keywords: DGEJSV; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08khf; nagf_lapackeig_dgejsv; dgejsv
Keywords: DGEJSV; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kjc; nag_dgesvj; dgesvj
Keywords: DGESVJ; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kjf; nagf_lapackeig_dgesvj; dgesvj
Keywords: DGESVJ; Jacobi method; LAPACK; real, nonsymmetric matrix; singular value decomposition
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kmc; nag_dgesvdx; dgesvdx
Keywords: DGESVDX; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kmf; nagf_lapackeig_dgesvdx; dgesvdx
Keywords: DGESVDX; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition
Names: f08knc; nag_zgelss; zgelss
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSS
GAMS: D9a1
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition
Names: f08knf; nagf_lapackeig_zgelss; zgelss
Keywords: complex, m×n matrix; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSS
GAMS: D9a1
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors
Names: f08kpc; nag_zgesvd; zgesvd
Keywords: complex, nonsymmetric matrix; finance; LAPACK; SVD, singular value decomposition; ZGESVD
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors
Names: f08kpf; nagf_lapackeig_zgesvd; zgesvd
Keywords: complex, nonsymmetric matrix; finance; LAPACK; SVD, singular value decomposition; ZGESVD
GAMS: D6
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kqc; nag_zgelsd; zgelsd
Keywords: complex, m×n matrix; divide-and-conquer method; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSD
GAMS: D9a1
Computes the minimum-norm solution to a complex linear least squares problem using singular value decomposition (divide-and-conquer)
Names: f08kqf; nagf_lapackeig_zgelsd; zgelsd
Keywords: complex, m×n matrix; divide-and-conquer method; LAPACK; linear least squares; minimal least squares; SVD, singular value decomposition; ZGELSD
GAMS: D9a1
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08krc; nag_zgesdd; zgesdd
Keywords: complex, nonsymmetric matrix; divide-and-conquer method; LAPACK; SVD, singular value decomposition; ZGESDD
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
Names: f08krf; nagf_lapackeig_zgesdd; zgesdd
Keywords: complex, nonsymmetric matrix; divide-and-conquer method; LAPACK; SVD, singular value decomposition; ZGESDD
GAMS: D6
Performs a unitary reduction of complex general rectangular matrix to bidiagonal form
Names: f08ksc; nag_zgebrd; zgebrd
Keywords: complex, m×n matrix; LAPACK; unitary transformations; ZGEBRD
GAMS: D6
Performs a unitary reduction of complex general rectangular matrix to bidiagonal form
Names: f08ksf; nagf_lapackeig_zgebrd; zgebrd
Keywords: complex, m×n matrix; LAPACK; unitary transformations; ZGEBRD
GAMS: D6
Generates unitary transformation matrices from the reduction to bidiagonal form determined by f08ksc
Names: f08ktc; nag_zungbr; zungbr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGBR
GAMS: D6
Generates unitary transformation matrices from the reduction to bidiagonal form determined by f08ksf
Names: f08ktf; nagf_lapackeig_zungbr; zungbr
Keywords: LAPACK; unitary matrix, generation; unitary transformations; ZUNGBR
GAMS: D6
Applies the unitary transformations from reduction to bidiagonal form determined by f08ksc
Names: f08kuc; nag_zunmbr; zunmbr
Keywords: LAPACK; unitary transformations; ZUNMBR
GAMS: D6
Applies the unitary transformations from reduction to bidiagonal form determined by f08ksf
Names: f08kuf; nagf_lapackeig_zunmbr; zunmbr
Keywords: LAPACK; unitary transformations; ZUNMBR
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08kvc; nag_zgejsv; zgejsv
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGEJSV
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (preconditioned Jacobi)
Names: f08kvf; nagf_lapackeig_zgejsv; zgejsv
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGEJSV
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kwc; nag_zgesvj; zgesvj
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGESVJ
GAMS: D6
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors (fast Jacobi)
Names: f08kwf; nagf_lapackeig_zgesvj; zgesvj
Keywords: complex, nonsymmetric matrix; Jacobi method; LAPACK; singular value decomposition; ZGESVJ
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a complex general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kzc; nag_zgesvdx; zgesvdx
Keywords: complex, nonsymmetric matrix; LAPACK; SVD, singular value decomposition; TGK; ZGESVDX
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a complex general matrix, optionally computing the corresponding left and right singular vectors
Names: f08kzf; nagf_lapackeig_zgesvdx; zgesvdx
Keywords: complex, nonsymmetric matrix; LAPACK; SVD, singular value decomposition; TGK; ZGESVDX
GAMS: D6
Performs a reduction of real rectangular band matrix to upper bidiagonal form
Names: f08lec; nag_dgbbrd; dgbbrd
Keywords: DGBBRD; Givens rotations; LAPACK; matrix, band; real, band, m×n matrix
GAMS: D4c1b3
Performs a reduction of real rectangular band matrix to upper bidiagonal form
Names: f08lef; nagf_lapackeig_dgbbrd; dgbbrd
Keywords: DGBBRD; Givens rotations; LAPACK; matrix, band; real, band, m×n matrix
GAMS: D4c1b3
Reduction of complex rectangular band matrix to upper bidiagonal form
Names: f08lsc; nag_zgbbrd; zgbbrd
Keywords: Givens rotations; LAPACK; matrix, band; real, band, m×n matrix; ZGBBRD
GAMS: D4c1b3
Reduction of complex rectangular band matrix to upper bidiagonal form
Names: f08lsf; nagf_lapackeig_zgbbrd; zgbbrd
Keywords: Givens rotations; LAPACK; matrix, band; real, band, m×n matrix; ZGBBRD
GAMS: D4c1b3
Computes all or selected singular values of the singular value decomposition of a real square bidiagonal matrix, optionally computing the corresponding left and right singular vectors
Names: f08mbc; nag_dbdsvdx; dbdsvdx
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes all or selected singular values of the singular value decomposition of a real square bidiagonal matrix, optionally computing the corresponding left and right singular vectors
Names: f08mbf; nagf_lapackeig_dbdsvdx; dbdsvdx
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; TGK
GAMS: D6
Computes the singular value decomposition of a real bidiagonal matrix, optionally computing the singular vectors (divide-and-conquer)
Names: f08mdc; nag_dbdsdc; dbdsdc
Keywords: DBDSDC; divide-and-conquer method; LAPACK; matrix, band; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real bidiagonal matrix, optionally computing the singular vectors (divide-and-conquer)
Names: f08mdf; nagf_lapackeig_dbdsdc; dbdsdc
Keywords: DBDSDC; divide-and-conquer method; LAPACK; matrix, band; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from real general matrix
Names: f08mec; nag_dbdsqr; dbdsqr
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from real general matrix
Names: f08mef; nagf_lapackeig_dbdsqr; dbdsqr
Keywords: DBDSQR; differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from complex general matrix
Names: f08msc; nag_zbdsqr; zbdsqr
Keywords: differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; ZBDSQR
GAMS: D6
Performs an SVD of real bidiagonal matrix reduced from complex general matrix
Names: f08msf; nagf_lapackeig_zbdsqr; zbdsqr
Keywords: differential qd algorithm; LAPACK; matrix, band; QL algorithm; QR algorithm; real, bidiagonal matrix; SVD, singular value decomposition; ZBDSQR
GAMS: D6
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix
Names: f08nac; nag_dgeev; dgeev
Keywords: DGEEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix
Names: f08naf; nagf_lapackeig_dgeev; dgeev
Keywords: DGEEV; eigenvalues; eigenvectors; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08nbc; nag_dgeevx; dgeevx
Keywords: balancing; condition number, matrix; DGEEVX; eigenvalues; eigenvectors; finance; forward error; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a real nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08nbf; nagf_lapackeig_dgeevx; dgeevx
Keywords: balancing; condition number, matrix; DGEEVX; eigenvalues; eigenvectors; finance; forward error; LAPACK; orthogonal transformations; QR algorithm; real, nonsymmetric matrix
GAMS: D4a2
Performs an orthogonal reduction of real general matrix to upper Hessenberg form
Names: f08nec; nag_dgehrd; dgehrd
Keywords: DGEHRD; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4c1b2
Performs an orthogonal reduction of real general matrix to upper Hessenberg form
Names: f08nef; nagf_lapackeig_dgehrd; dgehrd
Keywords: DGEHRD; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4c1b2
Generates an orthogonal transformation matrix from reduction to Hessenberg form determined by f08nec
Names: f08nfc; nag_dorghr; dorghr
Keywords: DORGHR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation
GAMS: D4c1b2
Generates an orthogonal transformation matrix from reduction to Hessenberg form determined by f08nef
Names: f08nff; nagf_lapackeig_dorghr; dorghr
Keywords: DORGHR; LAPACK; orthogonal matrix, generation; orthogonal matrix, generation
GAMS: D4c1b2
Applies the orthogonal transformation matrix from reduction to Hessenberg form determined by f08nec
Names: f08ngc; nag_dormhr; dormhr
Keywords: DORMHR; LAPACK; orthogonal transformations
GAMS: D4c4
Applies the orthogonal transformation matrix from reduction to Hessenberg form determined by f08nef
Names: f08ngf; nagf_lapackeig_dormhr; dormhr
Keywords: DORMHR; LAPACK; orthogonal transformations
GAMS: D4c4
Balances a real general matrix
Names: f08nhc; nag_dgebal; dgebal
Keywords: balancing; DGEBAL; LAPACK; real, nonsymmetric matrix
GAMS: D4c1a
Balances a real general matrix
Names: f08nhf; nagf_lapackeig_dgebal; dgebal
Keywords: balancing; DGEBAL; LAPACK; real, nonsymmetric matrix
GAMS: D4c1a
Transforms eigenvectors of real balanced matrix to those of original matrix supplied to f08nhc
Names: f08njc; nag_dgebak; dgebak
Keywords: balancing; DGEBAK; eigenvectors; LAPACK; real, nonsymmetric matrix
GAMS: D4c4
Transforms eigenvectors of real balanced matrix to those of original matrix supplied to f08nhf
Names: f08njf; nagf_lapackeig_dgebak; dgebak
Keywords: balancing; DGEBAK; eigenvectors; LAPACK; real, nonsymmetric matrix
GAMS: D4c4
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix
Names: f08nnc; nag_zgeev; zgeev
Keywords: complex, nonsymmetric matrix; DGEEV; eigenvalues; eigenvectors; LAPACK
GAMS: D4a4
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix
Names: f08nnf; nagf_lapackeig_zgeev; zgeev
Keywords: complex, nonsymmetric matrix; DGEEV; eigenvalues; eigenvectors; LAPACK
GAMS: D4a4
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08npc; nag_zgeevx; zgeevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; DGEEV; eigenvalues; eigenvectors; finance; forward error; LAPACK
GAMS: D4a4
Computes all eigenvalues and, optionally, left and/or right eigenvectors of a complex nonsymmetric matrix; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08npf; nagf_lapackeig_zgeevx; zgeevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; DGEEV; eigenvalues; eigenvectors; finance; forward error; LAPACK
GAMS: D4a4
Performs a unitary reduction of complex general matrix to upper Hessenberg form
Names: f08nsc; nag_zgehrd; zgehrd
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGEHRD
GAMS: D4c1b2
Performs a unitary reduction of complex general matrix to upper Hessenberg form
Names: f08nsf; nagf_lapackeig_zgehrd; zgehrd
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGEHRD
GAMS: D4c1b2
Generates a unitary transformation matrix from reduction to Hessenberg form determined by f08nsc
Names: f08ntc; nag_zunghr; zunghr
Keywords: LAPACK; unitary matrix, generation; unitary matrix, generation; ZUNGHR
GAMS: D4c1b2
Generates a unitary transformation matrix from reduction to Hessenberg form determined by f08nsf
Names: f08ntf; nagf_lapackeig_zunghr; zunghr
Keywords: LAPACK; unitary matrix, generation; unitary matrix, generation; ZUNGHR
GAMS: D4c1b2
Applies the unitary transformation matrix from reduction to Hessenberg form determined by f08nsc
Names: f08nuc; nag_zunmhr; zunmhr
Keywords: LAPACK; unitary transformations; ZUNMHR
GAMS: D4c4
Applies the unitary transformation matrix from reduction to Hessenberg form determined by f08nsf
Names: f08nuf; nagf_lapackeig_zunmhr; zunmhr
Keywords: LAPACK; unitary transformations; ZUNMHR
GAMS: D4c4
Balances a complex general matrix
Names: f08nvc; nag_zgebal; zgebal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAL
GAMS: D4c1a
Balances a complex general matrix
Names: f08nvf; nagf_lapackeig_zgebal; zgebal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAL
GAMS: D4c1a
Transforms eigenvectors of complex balanced matrix to those of original matrix supplied to f08nvc
Names: f08nwc; nag_zgebak; zgebak
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAK
GAMS: D4c4
Transforms eigenvectors of complex balanced matrix to those of original matrix supplied to f08nvf
Names: f08nwf; nagf_lapackeig_zgebak; zgebak
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGEBAK
GAMS: D4c4
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors
Names: f08pac; nag_dgees; dgees
Keywords: DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors
Names: f08paf; nagf_lapackeig_dgees; dgees
Keywords: DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08pbc; nag_dgeesx; dgeesx
Keywords: condition number, matrix; DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the real Schur form, and, optionally, the matrix of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08pbf; nagf_lapackeig_dgeesx; dgeesx
Keywords: condition number, matrix; DGEES; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors
GAMS: D4a2
Computes the eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
Names: f08pec; nag_dhseqr; dhseqr
Keywords: DHSEQR; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form
GAMS: D4c2b
Computes the eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
Names: f08pef; nagf_lapackeig_dhseqr; dhseqr
Keywords: DHSEQR; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form
GAMS: D4c2b
Computes selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
Names: f08pkc; nag_dhsein; dhsein
Keywords: DHSEIN; eigenvectors; inverse iteration; LAPACK; real, Hessenberg matrix
GAMS: D4c3
Computes selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
Names: f08pkf; nagf_lapackeig_dhsein; dhsein
Keywords: DHSEIN; eigenvectors; inverse iteration; LAPACK; real, Hessenberg matrix
GAMS: D4c3
Computes for complex square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
Names: f08pnc; nag_zgees; zgees
Keywords: complex, nonsymmetric matrix; eigenvalues; LAPACK; Schur form; Schur vectors; ZGEES
GAMS: D4a4
Computes for complex square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
Names: f08pnf; nagf_lapackeig_zgees; zgees
Keywords: complex, nonsymmetric matrix; eigenvalues; LAPACK; Schur form; Schur vectors; ZGEES
GAMS: D4a4
Computes for real square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors; also computes a reciprocal condition number for the average of the selected eigenvalues and for the right invariant subspace corresponding to these eigenvalues
Names: f08ppc; nag_zgeesx; zgeesx
Keywords: condition number, matrix; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors; ZGEESX
GAMS: D4a2
Computes for real square nonsymmetric matrix, the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors; also computes a reciprocal condition number for the average of the selected eigenvalues and for the right invariant subspace corresponding to these eigenvalues
Names: f08ppf; nagf_lapackeig_zgeesx; zgeesx
Keywords: condition number, matrix; eigenvalues; LAPACK; real, nonsymmetric matrix; Schur form; Schur vectors; ZGEESX
GAMS: D4a2
Computes the eigenvalues and Schur factorization of complex upper Hessenberg matrix reduced from complex general matrix
Names: f08psc; nag_zhseqr; zhseqr
Keywords: complex, Hessenberg matrix; eigenvalues; LAPACK; Schur form; ZHSEQR
GAMS: D4c2b
Computes the eigenvalues and Schur factorization of complex upper Hessenberg matrix reduced from complex general matrix
Names: f08psf; nagf_lapackeig_zhseqr; zhseqr
Keywords: complex, Hessenberg matrix; eigenvalues; LAPACK; Schur form; ZHSEQR
GAMS: D4c2b
Computes selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
Names: f08pxc; nag_zhsein; zhsein
Keywords: complex, Hessenberg matrix; eigenvectors; inverse iteration; LAPACK; ZHSEIN
GAMS: D4c3
Computes selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
Names: f08pxf; nagf_lapackeig_zhsein; zhsein
Keywords: complex, Hessenberg matrix; eigenvectors; inverse iteration; LAPACK; ZHSEIN
GAMS: D4c3
Reorders a Schur factorization of real matrix using orthogonal similarity transformation
Names: f08qfc; nag_dtrexc; dtrexc
Keywords: DTREXC; LAPACK; orthogonal transformations; real, nonsymmetric matrix; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix using orthogonal similarity transformation
Names: f08qff; nagf_lapackeig_dtrexc; dtrexc
Keywords: DTREXC; LAPACK; orthogonal transformations; real, nonsymmetric matrix; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08qgc; nag_dtrsen; dtrsen
Keywords: condition number, matrix; DTREXC; LAPACK; orthogonal transformations; Schur form
GAMS: D4c
Reorders a Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08qgf; nagf_lapackeig_dtrsen; dtrsen
Keywords: condition number, matrix; DTREXC; LAPACK; orthogonal transformations; Schur form
GAMS: D4c
Solves the real Sylvester matrix equation AX+XB=C, A and B are upper quasi-triangular or transposes
Names: f08qhc; nag_dtrsyl; dtrsyl
Keywords: DTRSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Solves the real Sylvester matrix equation AX+XB=C, A and B are upper quasi-triangular or transposes
Names: f08qhf; nagf_lapackeig_dtrsyl; dtrsyl
Keywords: DTRSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Computes left and right eigenvectors of real upper quasi-triangular matrix
Names: f08qkc; nag_dtrevc; dtrevc
Keywords: DTREVC; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c3
Computes left and right eigenvectors of real upper quasi-triangular matrix
Names: f08qkf; nagf_lapackeig_dtrevc; dtrevc
Keywords: DTREVC; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c3
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
Names: f08qlc; nag_dtrsna; dtrsna
Keywords: condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
Names: f08qlf; nagf_lapackeig_dtrsna; dtrsna
Keywords: condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK; real, quasi-triangular matrix
GAMS: D4c
Reorders a Schur factorization of complex matrix using unitary similarity transformation
Names: f08qtc; nag_ztrexc; ztrexc
Keywords: LAPACK; Schur form; unitary transformations; ZTREXC
GAMS: D4c
Reorders a Schur factorization of complex matrix using unitary similarity transformation
Names: f08qtf; nagf_lapackeig_ztrexc; ztrexc
Keywords: LAPACK; Schur form; unitary transformations; ZTREXC
GAMS: D4c
Reorders a Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08quc; nag_ztrsen; ztrsen
Keywords: condition number, matrix; LAPACK; Schur form; ZTRSEN
GAMS: D4c
Reorders a Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
Names: f08quf; nagf_lapackeig_ztrsen; ztrsen
Keywords: condition number, matrix; LAPACK; Schur form; ZTRSEN
GAMS: D4c
Solves the complex Sylvester matrix equation AX+XB=C, A and B are upper triangular or conjugate-transposes
Names: f08qvc; nag_ztrsyl; ztrsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTRSYL
GAMS: D8
Solves the complex Sylvester matrix equation AX+XB=C, A and B are upper triangular or conjugate-transposes
Names: f08qvf; nagf_lapackeig_ztrsyl; ztrsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTRSYL
GAMS: D8
Computes left and right eigenvectors of complex upper triangular matrix
Names: f08qxc; nag_ztrevc; ztrevc
Keywords: complex, triangular matrix; eigenvectors; LAPACK; ZTREVC
GAMS: D4c3
Computes left and right eigenvectors of complex upper triangular matrix
Names: f08qxf; nagf_lapackeig_ztrevc; ztrevc
Keywords: complex, triangular matrix; eigenvectors; LAPACK; ZTREVC
GAMS: D4c3
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix
Names: f08qyc; nag_ztrsna; ztrsna
Keywords: complex, triangular matrix; condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK
GAMS: D4c
Computes estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix
Names: f08qyf; nagf_lapackeig_ztrsna; ztrsna
Keywords: complex, triangular matrix; condition number, matrix; DTRSNA; eigenvalues; eigenvectors; LAPACK
GAMS: D4c
Computes the CS decomposition of an orthogonal matrix partitioned into four real submatrices
Names: f08rac; nag_dorcsd; dorcsd
Keywords: complete CS decomposition; DORCSD; GSVD, generalized singular value decomposition; LAPACK; real, orthogonal matrix
GAMS: D6
Computes the CS decomposition of an orthogonal matrix partitioned into four real submatrices
Names: f08raf; nagf_lapackeig_dorcsd; dorcsd
Keywords: complete CS decomposition; DORCSD; GSVD, generalized singular value decomposition; LAPACK; real, orthogonal matrix
GAMS: D6
Computes the CS decomposition of a unitary matrix partitioned into four complex submatrices
Names: f08rnc; nag_zuncsd; zuncsd
Keywords: complete CS decomposition; complex, unitary matrix; GSVD, generalized singular value decomposition; LAPACK; ZUNCSD
GAMS: D6
Computes the CS decomposition of a unitary matrix partitioned into four complex submatrices
Names: f08rnf; nagf_lapackeig_zuncsd; zuncsd
Keywords: complete CS decomposition; complex, unitary matrix; GSVD, generalized singular value decomposition; LAPACK; ZUNCSD
GAMS: D6
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sac; nag_dsygv; dsygv
Keywords: DSYGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08saf; nagf_lapackeig_dsygv; dsygv
Keywords: DSYGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sbc; nag_dsygvx; dsygvx
Keywords: DSYGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem
Names: f08sbf; nagf_lapackeig_dsygvx; dsygvx
Keywords: DSYGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08scc; nag_dsygvd; dsygvd
Keywords: divide-and-conquer method; DSYGVD; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08scf; nagf_lapackeig_dsygvd; dsygvd
Keywords: divide-and-conquer method; DSYGVD; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, B factorized by f07fdc
Names: f08sec; nag_dsygst; dsygst
Keywords: DSYGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, B factorized by f07fdf
Names: f08sef; nagf_lapackeig_dsygst; dsygst
Keywords: DSYGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08snc; nag_zhegv; zhegv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGV
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08snf; nagf_lapackeig_zhegv; zhegv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGV
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08spc; nag_zhegvx; zhegvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVX
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem
Names: f08spf; nagf_lapackeig_zhegvx; zhegvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVX
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08sqc; nag_zhegvd; zhegvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVD
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08sqf; nagf_lapackeig_zhegvd; zhegvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHEGVD
GAMS: D4b3
Performs a reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, B factorized by f07frc
Names: f08ssc; nag_zhegst; zhegst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHEGST
GAMS: D4c1c
Performs a reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, B factorized by f07frf
Names: f08ssf; nagf_lapackeig_zhegst; zhegst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHEGST
GAMS: D4c1c
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tac; nag_dspgv; dspgv
Keywords: DSPGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08taf; nagf_lapackeig_dspgv; dspgv
Keywords: DSPGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tbc; nag_dspgvx; dspgvx
Keywords: DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage
Names: f08tbf; nagf_lapackeig_dspgvx; dspgvx
Keywords: DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tcc; nag_dspgvd; dspgvd
Keywords: divide-and-conquer method; DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tcf; nagf_lapackeig_dspgvd; dspgvd
Keywords: divide-and-conquer method; DSPGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4b1
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, packed storage, B factorized by f07gdc
Names: f08tec; nag_dspgst; dspgst
Keywords: DSPGVX; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Performs a reduction to standard form of real symmetric-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, packed storage, B factorized by f07gdf
Names: f08tef; nagf_lapackeig_dspgst; dspgst
Keywords: DSPGVX; eigenproblem, generalized; generalized eigenproblem; LAPACK; real, positive definite, symmetric matrix
GAMS: D4c1c
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tnc; nag_zhpgv; zhpgv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGV
GAMS: D4b3
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tnf; nagf_lapackeig_zhpgv; zhpgv
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGV
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tpc; nag_zhpgvx; zhpgvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVX
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage
Names: f08tpf; nagf_lapackeig_zhpgvx; zhpgvx
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVX
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tqc; nag_zhpgvd; zhpgvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4b3
Computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, packed storage (divide-and-conquer)
Names: f08tqf; nagf_lapackeig_zhpgvd; zhpgvd
Keywords: complex, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4b3
Performs a reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, packed storage, B factorized by f07grc
Names: f08tsc; nag_zhpgst; zhpgst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4c1c
Performs a reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, packed storage, B factorized by f07grf
Names: f08tsf; nagf_lapackeig_zhpgst; zhpgst
Keywords: complex, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; ZHPGVD
GAMS: D4c1c
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08uac; nag_dsbgv; dsbgv
Keywords: DSBGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08uaf; nagf_lapackeig_dsbgv; dsbgv
Keywords: DSBGV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08ubc; nag_dsbgvx; dsbgvx
Keywords: DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem
Names: f08ubf; nagf_lapackeig_dsbgvx; dsbgvx
Keywords: DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08ucc; nag_dsbgvd; dsbgvd
Keywords: divide-and-conquer method; DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a real banded generalized symmetric-definite eigenproblem (divide-and-conquer)
Names: f08ucf; nagf_lapackeig_dsbgvd; dsbgvd
Keywords: divide-and-conquer method; DSBGVX; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4b5
Performs a reduction of real symmetric-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08uec; nag_dsbgst; dsbgst
Keywords: DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4c1c
Performs a reduction of real symmetric-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08uef; nagf_lapackeig_dsbgst; dsbgst
Keywords: DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D4c1c
Computes a split Cholesky factorization of real symmetric positive definite band matrix A
Names: f08ufc; nag_dpbstf; dpbstf
Keywords: Cholesky decomposition; DPBSTF; DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes a split Cholesky factorization of real symmetric positive definite band matrix A
Names: f08uff; nagf_lapackeig_dpbstf; dpbstf
Keywords: Cholesky decomposition; DPBSTF; DSBGST; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; real, band, positive definite, symmetric matrix
GAMS: D2b2
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08unc; nag_zhbgv; zhbgv
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGV
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08unf; nagf_lapackeig_zhbgv; zhbgv
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGV
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08upc; nag_zhbgvx; zhbgvx
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVX
GAMS: D4b5
Computes selected eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem
Names: f08upf; nagf_lapackeig_zhbgvx; zhbgvx
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVX
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08uqc; nag_zhbgvd; zhbgvd
Keywords: complex, band, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVD
GAMS: D4b5
Computes all the eigenvalues, and optionally, the eigenvectors of a complex banded generalized Hermitian-definite eigenproblem (divide-and-conquer)
Names: f08uqf; nagf_lapackeig_zhbgvd; zhbgvd
Keywords: complex, band, Hermitian, positive definite matrix; divide-and-conquer method; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; matrix, band; ZHBGVD
GAMS: D4b5
Performs a reduction of complex Hermitian-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08usc; nag_zhbgst; zhbgst
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; ZHBGST
GAMS: D4c1c
Performs a reduction of complex Hermitian-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
Names: f08usf; nagf_lapackeig_zhbgst; zhbgst
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; ZHBGST
GAMS: D4c1c
Computes a split Cholesky factorization of complex Hermitian positive definite band matrix A
Names: f08utc; nag_zpbstf; zpbstf
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; Split Cholesky factorization; ZPBSTF
GAMS: D2b2
Computes a split Cholesky factorization of complex Hermitian positive definite band matrix A
Names: f08utf; nagf_lapackeig_zpbstf; zpbstf
Keywords: complex, band, Hermitian, positive definite matrix; eigenproblem, generalized; generalized eigenproblem; LAPACK; matrix, band; Split Cholesky factorization; ZPBSTF
GAMS: D2b2
Computes the generalized singular value decomposition of a real matrix pair
Names: f08vac; nag_dggsvd; dggsvd
Keywords: DGGSVD; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a real matrix pair
Names: f08vaf; nagf_lapackeig_dggsvd; dggsvd
Keywords: DGGSVD; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a real matrix pair
Names: f08vcc; nag_dggsvd3; dggsvd3
Keywords: DGGSVD3; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a real matrix pair
Names: f08vcf; nagf_lapackeig_dggsvd3; dggsvd3
Keywords: DGGSVD3; GSVD, generalized singular value decomposition; LAPACK; real, nonsymmetric matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vec; nag_dggsvp; dggsvp
Keywords: DGGSVP; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vef; nagf_lapackeig_dggsvp; dggsvp
Keywords: DGGSVP; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices, using BLAS-3, that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vgc; nag_dggsvp3; dggsvp3
Keywords: DGGSVP3; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Produces orthogonal matrices, using BLAS-3, that simultaneously reduce the m×n matrix A and the p×n matrix B to upper triangular form
Names: f08vgf; nagf_lapackeig_dggsvp3; dggsvp3
Keywords: DGGSVP3; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; real, m×n matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a complex matrix pair
Names: f08vnc; nag_zggsvd; zggsvd
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD
GAMS: D6
Computes the generalized singular value decomposition of a complex matrix pair
Names: f08vnf; nagf_lapackeig_zggsvd; zggsvd
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a complex matrix pair
Names: f08vqc; nag_zggsvd3; zggsvd3
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD3
GAMS: D6
Computes, using BLAS-3, the generalized singular value decomposition of a complex matrix pair
Names: f08vqf; nagf_lapackeig_zggsvd3; zggsvd3
Keywords: complex, nonsymmetric matrix; GSVD, generalized singular value decomposition; LAPACK; SVD, generalized; ZGGSVD3
GAMS: D6
Produces unitary matrices that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vsc; nag_zggsvp; zggsvp
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP
GAMS: D6
Produces unitary matrices that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vsf; nagf_lapackeig_zggsvp; zggsvp
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP
GAMS: D6
Produces unitary matrices, using BLAS-3, that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vuc; nag_zggsvp3; zggsvp3
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP3
GAMS: D6
Produces unitary matrices, using BLAS-3, that simultaneously reduce the complex, m×n, matrix A and the complex, p×n, matrix B to upper triangular form
Names: f08vuf; nagf_lapackeig_zggsvp3; zggsvp3
Keywords: complex, m×n matrix; GSVD, generalized singular value decomposition; LAPACK; orthogonal transformations; SVD, generalized; ZGGSVP3
GAMS: D6
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wac; nag_dggev; dggev
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08waf; nagf_lapackeig_dggev; dggev
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wbc; nag_dggevx; dggevx
Keywords: balancing; condition number, matrix; DGGEVX; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wbf; nagf_lapackeig_dggevx; dggevx
Keywords: balancing; condition number, matrix; DGGEVX; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wcc; nag_dggev3; dggev3
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wcf; nagf_lapackeig_dggev3; dggev3
Keywords: DGGEV; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; real, nonsymmetric matrix
GAMS: D4b2
Performs an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wec; nag_dgghrd; dgghrd
Keywords: DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wef; nagf_lapackeig_dgghrd; dgghrd
Keywords: DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs, using BLAS-3, an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wfc; nag_dgghd3; dgghd3
Keywords: DGGHD3; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Performs, using BLAS-3, an orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
Names: f08wff; nagf_lapackeig_dgghd3; dgghd3
Keywords: DGGHD3; eigenproblem, generalized; generalized eigenproblem; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b2
Balances a pair of real, square, matrices
Names: f08whc; nag_dggbal; dggbal
Keywords: balancing; DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK
GAMS: D4b2
Balances a pair of real, square, matrices
Names: f08whf; nagf_lapackeig_dggbal; dggbal
Keywords: balancing; DGGHRD; eigenproblem, generalized; generalized eigenproblem; LAPACK
GAMS: D4b2
Transforms eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to f08whc
Names: f08wjc; nag_dggbak; dggbak
Keywords: balancing; DGGBAK; eigenproblem, generalized; eigenvectors; generalized eigenproblem; LAPACK
GAMS: D4b2
Transforms eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to f08whf
Names: f08wjf; nagf_lapackeig_dggbak; dggbak
Keywords: balancing; DGGBAK; eigenproblem, generalized; eigenvectors; generalized eigenproblem; LAPACK
GAMS: D4b2
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wnc; nag_zggev; zggev
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wnf; nagf_lapackeig_zggev; zggev
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wpc; nag_zggevx; zggevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; ZGGEVX
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors; also, optionally, the balancing transformation, the reciprocal condition numbers for the eigenvalues and for the right eigenvectors
Names: f08wpf; nagf_lapackeig_zggevx; zggevx
Keywords: balancing; complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; eigenvectors; finance; forward error; generalized eigenproblem; LAPACK; ZGGEVX
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wqc; nag_zggev3; zggev3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV3
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors
Names: f08wqf; nagf_lapackeig_zggev3; zggev3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; eigenvectors; generalized eigenproblem; LAPACK; ZGGEV3
GAMS: D4b4
Performs, using BLAS-3, a unitary reduction of a pair of complex general matrices to generalized upper Hessenberg form
Names: f08wtc; nag_zgghd3; zgghd3
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGGHD3
GAMS: D4b4
Performs, using BLAS-3, a unitary reduction of a pair of complex general matrices to generalized upper Hessenberg form
Names: f08wtf; nagf_lapackeig_zgghd3; zgghd3
Keywords: complex, nonsymmetric matrix; LAPACK; unitary transformations; ZGGHD3
GAMS: D4b4
Balances a pair of complex, square, matrices
Names: f08wvc; nag_zggbal; zggbal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGGBAL
GAMS: D4b4
Balances a pair of complex, square, matrices
Names: f08wvf; nagf_lapackeig_zggbal; zggbal
Keywords: balancing; complex, nonsymmetric matrix; LAPACK; ZGGBAL
GAMS: D4b4
Transforms eigenvectors of a pair of complex balanced matrices to those of original matrix pair supplied to f08wvc
Names: f08wwc; nag_zggbak; zggbak
Keywords: balancing; complex, nonsymmetric matrix; eigenvectors; LAPACK; ZGGBAL
GAMS: D4b4
Transforms eigenvectors of a pair of complex balanced matrices to those of original matrix pair supplied to f08wvf
Names: f08wwf; nagf_lapackeig_zggbak; zggbak
Keywords: balancing; complex, nonsymmetric matrix; eigenvectors; LAPACK; ZGGBAL
GAMS: D4b4
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xac; nag_dgges; dgges
Keywords: DGGES; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xaf; nagf_lapackeig_dgges; dgges
Keywords: DGGES; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xbc; nag_dggesx; dggesx
Keywords: condition number, matrix; DGGESX; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xbf; nagf_lapackeig_dggesx; dggesx
Keywords: condition number, matrix; DGGESX; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xcc; nag_dgges3; dgges3
Keywords: DGGES3; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes, for a real nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized real Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xcf; nagf_lapackeig_dgges3; dgges3
Keywords: DGGES3; eigenvalues; generalized Schur form; LAPACK; real, nonsymmetric matrix; Schur form, generalized; Schur vectors
GAMS: D4b2
Computes eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
Names: f08xec; nag_dhgeqz; dhgeqz
Keywords: DHGEQZ; eigenvalues; generalized Schur form; LAPACK; real, Hessenberg matrix
GAMS: D4b2
Computes eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
Names: f08xef; nagf_lapackeig_dhgeqz; dhgeqz
Keywords: DHGEQZ; eigenvalues; generalized Schur form; LAPACK; real, Hessenberg matrix
GAMS: D4b2
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xnc; nag_zgges; zgges
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xnf; nagf_lapackeig_zgges; zgges
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xpc; nag_zggesx; zggesx
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors; also, optionally, computes reciprocal condition numbers for selected eigenvalues
Names: f08xpf; nagf_lapackeig_zggesx; zggesx
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xqc; nag_zgges3; zgges3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES3
GAMS: D4b4
Computes, for a complex nonsymmetric matrix pair, using BLAS-3, the generalized eigenvalues, the generalized complex Schur form and, optionally, the left and/or right matrices of Schur vectors
Names: f08xqf; nagf_lapackeig_zgges3; zgges3
Keywords: complex, nonsymmetric matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; Schur vectors; ZGGES3
GAMS: D4b4
Eigenvalues and generalized Schur factorization of complex generalized upper Hessenberg form reduced from a pair of complex, square, matrices
Names: f08xsc; nag_zhgeqz; zhgeqz
Keywords: complex, Hermitian, indefinite matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; QZ algorithm; ZHGEQZ
GAMS: D4b4
Eigenvalues and generalized Schur factorization of complex generalized upper Hessenberg form reduced from a pair of complex, square, matrices
Names: f08xsf; nagf_lapackeig_zhgeqz; zhgeqz
Keywords: complex, Hermitian, indefinite matrix; eigenproblem, generalized; eigenvalues; generalized eigenproblem; generalized Schur form; LAPACK; QZ algorithm; ZHGEQZ
GAMS: D4b4
Computes the generalized singular value decomposition of a real upper triangular (or trapezoidal) matrix pair
Names: f08yec; nag_dtgsja; dtgsja
Keywords: DTGSJA; GSVD, generalized singular value decomposition; LAPACK; real, trapezoidal matrix; real, triangular matrix; SVD, generalized
GAMS: D6
Computes the generalized singular value decomposition of a real upper triangular (or trapezoidal) matrix pair
Names: f08yef; nagf_lapackeig_dtgsja; dtgsja
Keywords: DTGSJA; GSVD, generalized singular value decomposition; LAPACK; real, trapezoidal matrix; real, triangular matrix; SVD, generalized
GAMS: D6
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation
Names: f08yfc; nag_dtgexc; dtgexc
Keywords: DTGEXC; generalized Schur form; LAPACK; orthogonal transformations
GAMS: D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation
Names: f08yff; nagf_lapackeig_dtgexc; dtgexc
Keywords: DTGEXC; generalized Schur form; LAPACK; orthogonal transformations
GAMS: D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08ygc; nag_dtgsen; dtgsen
Keywords: condition number, matrix; DTGSEN; eigenvalues; generalized Schur form; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b, D4c
Reorders the generalized real Schur decomposition of a real matrix pair using an orthogonal equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08ygf; nagf_lapackeig_dtgsen; dtgsen
Keywords: condition number, matrix; DTGSEN; eigenvalues; generalized Schur form; LAPACK; orthogonal transformations; real, nonsymmetric matrix
GAMS: D4b, D4c
Solves the real-valued, generalized, quasi-trangular, Sylvester equation
Names: f08yhc; nag_dtgsyl; dtgsyl
Keywords: DTGSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Solves the real-valued, generalized, quasi-trangular, Sylvester equation
Names: f08yhf; nagf_lapackeig_dtgsyl; dtgsyl
Keywords: DTGSYL; LAPACK; real, quasi-triangular matrix; Sylvester equation
GAMS: D8
Computes right and left generalized eigenvectors of the matrix pair (A,B) which is assumed to be in generalized upper Schur form
Names: f08ykc; nag_dtgevc; dtgevc
Keywords: DTGEVC; eigenvectors; generalized Schur form; LAPACK
GAMS: D4b2
Computes right and left generalized eigenvectors of the matrix pair (A,B) which is assumed to be in generalized upper Schur form
Names: f08ykf; nagf_lapackeig_dtgevc; dtgevc
Keywords: DTGEVC; eigenvectors; generalized Schur form; LAPACK
GAMS: D4b2
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a real matrix pair in generalized real Schur canonical form
Names: f08ylc; nag_dtgsna; dtgsna
Keywords: condition number, matrix; DTGSNA; generalized Schur form; LAPACK; real, nonsymmetric matrix
GAMS: D4c
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a real matrix pair in generalized real Schur canonical form
Names: f08ylf; nagf_lapackeig_dtgsna; dtgsna
Keywords: condition number, matrix; DTGSNA; generalized Schur form; LAPACK; real, nonsymmetric matrix
GAMS: D4c
Computes the generalized singular value decomposition of a complex upper triangular (or trapezoidal) matrix pair
Names: f08ysc; nag_ztgsja; ztgsja
Keywords: complex, trapezoidal matrix; complex, triangular matrix; GSVD, generalized singular value decomposition; LAPACK; ZTGSJA
GAMS: D6
Computes the generalized singular value decomposition of a complex upper triangular (or trapezoidal) matrix pair
Names: f08ysf; nagf_lapackeig_ztgsja; ztgsja
Keywords: complex, trapezoidal matrix; complex, triangular matrix; GSVD, generalized singular value decomposition; LAPACK; ZTGSJA
GAMS: D6
Reorders the generalized Schur decomposition of a complex matrix pair using an unitary equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08yuc; nag_ztgsen; ztgsen
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenvalues; generalized Schur form; LAPACK; unitary transformations; ZTGEXC
GAMS: D4b, D4c
Reorders the generalized Schur decomposition of a complex matrix pair using an unitary equivalence transformation, computes the generalized eigenvalues of the reordered pair and, optionally, computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces
Names: f08yuf; nagf_lapackeig_ztgsen; ztgsen
Keywords: complex, nonsymmetric matrix; condition number, matrix; eigenvalues; generalized Schur form; LAPACK; unitary transformations; ZTGEXC
GAMS: D4b, D4c
Solves the complex generalized Sylvester equation
Names: f08yvc; nag_ztgsyl; ztgsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTGSYL
GAMS: D8
Solves the complex generalized Sylvester equation
Names: f08yvf; nagf_lapackeig_ztgsyl; ztgsyl
Keywords: complex, triangular matrix; LAPACK; Sylvester equation; ZTGSYL
GAMS: D8
Computes left and right eigenvectors of a pair of complex upper triangular matrices
Names: f08yxc; nag_ztgevc; ztgevc
Keywords: complex, triangular matrix; eigenvectors; generalized Schur form; LAPACK; ZTGEVC
GAMS: D4b4
Computes left and right eigenvectors of a pair of complex upper triangular matrices
Names: f08yxf; nagf_lapackeig_ztgevc; ztgevc
Keywords: complex, triangular matrix; eigenvectors; generalized Schur form; LAPACK; ZTGEVC
GAMS: D4b4
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a complex matrix pair in generalized Schur canonical form
Names: f08yyc; nag_ztgsna; ztgsna
Keywords: complex, nonsymmetric matrix; condition number, matrix; generalized Schur form; LAPACK; ZTGSNA
GAMS: D4c
Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a complex matrix pair in generalized Schur canonical form
Names: f08yyf; nagf_lapackeig_ztgsna; ztgsna
Keywords: complex, nonsymmetric matrix; condition number, matrix; generalized Schur form; LAPACK; ZTGSNA
GAMS: D4c
Solves the real linear equality-constrained least squares (LSE) problem
Names: f08zac; nag_dgglse; dgglse
Keywords: DGGLSE; LAPACK; linear least squares; real, m×n matrix; RQ factorizations
GAMS: D9b1
Solves the real linear equality-constrained least squares (LSE) problem
Names: f08zaf; nagf_lapackeig_dgglse; dgglse
Keywords: DGGLSE; LAPACK; linear least squares; real, m×n matrix; RQ factorizations
GAMS: D9b1
Solves a real general Gauss–Markov linear model (GLM) problem
Names: f08zbc; nag_dggglm; dggglm
Keywords: DGGGLM; Gauss–Markov linear model; LAPACK; QR factorization; real, m×n matrix
GAMS: D9b1
Solves a real general Gauss–Markov linear model (GLM) problem
Names: f08zbf; nagf_lapackeig_dggglm; dggglm
Keywords: DGGGLM; Gauss–Markov linear model; LAPACK; QR factorization; real, m×n matrix
GAMS: D9b1
Computes a generalized QR factorization of a real matrix pair
Names: f08zec; nag_dggqrf; dggqrf
Keywords: DGGQRF; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Computes a generalized QR factorization of a real matrix pair
Names: f08zef; nagf_lapackeig_dggqrf; dggqrf
Keywords: DGGQRF; LAPACK; QR factorization; real, m×n matrix
GAMS: D5
Computes a generalized RQ factorization of a real matrix pair
Names: f08zfc; nag_dggrqf; dggrqf
Keywords: DGGRQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
Computes a generalized RQ factorization of a real matrix pair
Names: f08zff; nagf_lapackeig_dggrqf; dggrqf
Keywords: DGGRQF; LAPACK; real, m×n matrix; RQ factorizations
GAMS: D5
Solves the complex linear equality-constrained least squares (LSE) problem
Names: f08znc; nag_zgglse; zgglse
Keywords: complex, m×n matrix; LAPACK; linear least squares; RQ factorizations; ZGGLSE
GAMS: D9b1
Solves the complex linear equality-constrained least squares (LSE) problem
Names: f08znf; nagf_lapackeig_zgglse; zgglse
Keywords: complex, m×n matrix; LAPACK; linear least squares; RQ factorizations; ZGGLSE
GAMS: D9b1
Solves a complex general Gauss–Markov linear model (GLM) problem
Names: f08zpc; nag_zggglm; zggglm
Keywords: complex, m×n matrix; Gauss–Markov linear model; LAPACK; ZGGGLM
GAMS: D9b1
Solves a complex general Gauss–Markov linear model (GLM) problem
Names: f08zpf; nagf_lapackeig_zggglm; zggglm
Keywords: complex, m×n matrix; Gauss–Markov linear model; LAPACK; ZGGGLM
GAMS: D9b1
Computes a generalized QR factorization of a complex matrix pair
Names: f08zsc; nag_zggqrf; zggqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGGQRF
GAMS: D5
Computes a generalized QR factorization of a complex matrix pair
Names: f08zsf; nagf_lapackeig_zggqrf; zggqrf
Keywords: complex, m×n matrix; LAPACK; QR factorization; ZGGQRF
GAMS: D5
Computes a generalized RQ factorization of a complex matrix pair
Names: f08ztc; nag_zggrqf; zggrqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGGRQF
GAMS: D5
Computes a generalized RQ factorization of a complex matrix pair
Names: f08ztf; nagf_lapackeig_zggrqf; zggrqf
Keywords: complex, m×n matrix; LAPACK; RQ factorizations; ZGGRQF
GAMS: D5
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f10cac; nag_rnla_svd_rowext_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
Names: f10caf; nagf_rnla_svd_rowext_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes a fast random projection of a real matrix using a discrete cosine transform
Names: f10dac; nag_rnla_randproj_dct_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Computes a fast random projection of a real matrix using a discrete cosine transform
Names: f10daf; nagf_rnla_randproj_dct_real
Keywords: DGESVD; LAPACK; real, nonsymmetric matrix; SVD, singular value decomposition
GAMS: D6
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bec; nag_sparse_nsym_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bef; nagf_sparse_real_gen_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bsc; nag_sparse_nherm_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Names: f11bsf; nagf_sparse_complex_gen_basic_solver
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by f11daf
Names: f11dcf; nagf_sparse_real_gen_solve_ilu
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; incomplete LU factorization; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB, or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
Names: f11def; nagf_sparse_real_gen_solve_jacssor
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; iterative methods, linear equations; Jacobi preconditioning; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; SSOR method, symmetric successive over-relaxation; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2a4
Real sparse nonsymmetric linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dfc; nag_sparse_nsym_precon_bdilu
Keywords: additive Schwarz preconditioner; incomplete LU factorization; linear equations, pre-conditioners; real, sparse matrix
GAMS: D2a4, D2e
Real sparse nonsymmetric linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dff; nagf_sparse_real_gen_precon_bdilu
Keywords: additive Schwarz preconditioner; incomplete LU factorization; linear equations, pre-conditioners; real, sparse matrix
GAMS: D2a4, D2e
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete LU block diagonal preconditioner computed by f11dfc
Names: f11dgc; nag_sparse_nsym_precon_bdilu_solve
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; incomplete LU factorization; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2e, D2a4
Solution of real sparse nonsymmetric linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete LU block diagonal preconditioner computed by f11dff
Names: f11dgf; nagf_sparse_real_gen_solve_bdilu
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; incomplete LU factorization; iterative methods, linear equations; linear equations, iterative method; real, sparse matrix; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2e, D2a4
Real, sparse, symmetric or nonsymmetric, linear systems, line Jacobi preconditioner
Names: f11dkc; nag_sparse_nsym_jacobi
Keywords: Jacobi preconditioning; linear equations, pre-conditioners; real, sparse, symmetric matrix; real, sparse matrix
GAMS: D1b4, D2b4, D2e
Real, sparse, symmetric or nonsymmetric, linear systems, line Jacobi preconditioner
Names: f11dkf; nagf_sparse_real_gen_precon_jacobi
Keywords: Jacobi preconditioning; linear equations, pre-conditioners; real, sparse, symmetric matrix; real, sparse matrix
GAMS: D1b4, D2b4, D2e
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by f11dnc (Black Box)
Names: f11dqc; nag_sparse_nherm_fac_sol
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by f11dnf (Black Box)
Names: f11dqf; nagf_sparse_complex_gen_solve_ilu
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner Black Box
Names: f11dsc; nag_sparse_nherm_sol
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; Jacobi preconditioning; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; SSOR method, symmetric successive over-relaxation; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner Black Box
Names: f11dsf; nagf_sparse_complex_gen_solve_jacssor
Keywords: Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; iterative methods, linear equations; Jacobi preconditioning; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; SSOR method, symmetric successive over-relaxation; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Complex, sparse, non-Hermitian linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dtc; nag_sparse_nherm_precon_bdilu
Keywords: additive Schwarz preconditioner; complex, sparse matrix; incomplete LU factorization; linear equations, pre-conditioners
GAMS: D2c4
Complex, sparse, non-Hermitian linear system, incomplete LU factorization of local or overlapping diagonal blocks
Names: f11dtf; nagf_sparse_complex_gen_precon_bdilu
Keywords: additive Schwarz preconditioner; complex, sparse matrix; incomplete LU factorization; linear equations, pre-conditioners
GAMS: D2c4
Solution of complex, sparse, non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete LU block diagonal preconditioner computed by f11dtc
Names: f11duc; nag_sparse_nherm_precon_bdilu_solve
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Solution of complex, sparse, non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, incomplete LU block diagonal preconditioner computed by f11dtf
Names: f11duf; nagf_sparse_complex_gen_solve_bdilu
Keywords: additive Schwarz preconditioner; Bi-CGSTAB; CGS, conjugate gradient method; complex, sparse matrix; incomplete LU factorization; iterative methods, linear equations; linear equations, iterative method; RGMRES, restarted generalized minimum residual method; TFQMR, transpose-free quasi-minimal residual method
GAMS: D2c4
Complex, sparse, Hermitian or non-Hermitian, linear systems, line Jacobi preconditioner
Names: f11dxc; nag_sparse_nherm_jacobi
Keywords: complex, sparse matrix; Jacobi preconditioning; linear equations, pre-conditioners
GAMS: D2b4, D2e
Complex, sparse, Hermitian or non-Hermitian, linear systems, line Jacobi preconditioner
Names: f11dxf; nagf_sparse_complex_gen_precon_jacobi
Keywords: complex, sparse matrix; Jacobi preconditioning; linear equations, pre-conditioners
GAMS: D2b4, D2e
Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos method or the MINRES algorithm
Names: f11gec; nag_sparse_sym_basic_solver
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; MINRES, iterative linear equation solver; real, sparse, symmetric matrix
GAMS: D2b4
Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos method or the MINRES algorithm
Names: f11gef; nagf_sparse_real_symm_basic_solver
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; MINRES, iterative linear equation solver; real, sparse, symmetric matrix
GAMS: D2b4
Complex sparse Hermitian linear systems, preconditioned conjugate gradient or Lanczos
Names: f11gsc; nag_sparse_herm_basic_solver
Keywords: CGS, conjugate gradient method; complex, Hermitian, sparse matrix; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method
GAMS: D2b4
Complex sparse Hermitian linear systems, preconditioned conjugate gradient or Lanczos
Names: f11gsf; nagf_sparse_complex_herm_basic_solver
Keywords: CGS, conjugate gradient method; complex, Hermitian, sparse matrix; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method
GAMS: D2b4
Real sparse symmetric matrix, incomplete Cholesky factorization
Names: f11jaf; nagf_sparse_real_symm_precon_ichol
Keywords: incomplete Cholesky factorization; linear equations, pre-conditioners; real, sparse, symmetric matrix
GAMS: D2b4
Solver with incomplete Cholesky preconditioning (symmetric)
Names: f11jcc; nag_sparse_sym_chol_sol
Keywords: CGS, conjugate gradient method; incomplete Cholesky factorization; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix
GAMS: D2b4
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, preconditioner computed by f11jaf (Black Box)
Names: f11jcf; nagf_sparse_real_symm_solve_ichol
Keywords: CGS, conjugate gradient method; incomplete Cholesky factorization; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix
GAMS: D2b4
Solver with Jacobi, SSOR, or no preconditioning (symmetric)
Names: f11jec; nag_sparse_sym_sol
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Jacobi preconditioning; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix; SSOR method, symmetric successive over-relaxation
GAMS: D2b4
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
Names: f11jef; nagf_sparse_real_symm_solve_jacssor
Keywords: CGS, conjugate gradient method; iterative methods, linear equations; Jacobi preconditioning; Lanczos method, linear equations; linear equations, iterative method; real, sparse, symmetric matrix; SSOR method, symmetric successive over-relaxation
GAMS: D2b4
Complex sparse Hermitian matrix, incomplete Cholesky factorization
Names: f11jnc; nag_sparse_herm_chol_fac
Keywords: complex, Hermitian, sparse matrix; incomplete Cholesky factorization
GAMS: D2d4
Complex sparse Hermitian matrix, incomplete Cholesky factorization
Names: f11jnf; nagf_sparse_complex_herm_precon_ichol
Keywords: complex, Hermitian, sparse matrix; incomplete Cholesky factorization
GAMS: D2d4
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed by f11jnc (Black Box)
Names: f11jqc; nag_sparse_herm_chol_sol
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations
GAMS: D2d4
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed by f11jnf (Black Box)
Names: f11jqf; nagf_sparse_complex_herm_solve_ilu
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations
GAMS: D2d4
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
Names: f11jsc; nag_sparse_herm_sol
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Jacobi method; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations; SSOR method, symmetric successive over-relaxation
GAMS: D2d4
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
Names: f11jsf; nagf_sparse_complex_herm_solve_jacssor
Keywords: complex, Hermitian, sparse matrix; conjugate gradient method; iterative methods, linear equations; Jacobi method; Lanczos method, linear equations; linear equations, iterative method; sparse linear equations; SSOR method, symmetric successive over-relaxation
GAMS: D2d4
Real sparse nonsymmetric linear systems, setup for f11mec
Names: f11mdc; nag_superlu_column_permutation
Keywords: linear equations, direct method, setup; real, sparse matrix
GAMS: D2a4
Real sparse nonsymmetric linear systems, setup for f11mef
Names: f11mdf; nagf_sparse_direct_real_gen_setup
Keywords: linear equations, direct method, setup; real, sparse matrix
GAMS: D2a4
LU factorization of real sparse matrix
Names: f11mec; nag_superlu_lu_factorize
Keywords: discretised system; LU decomposition; real, sparse matrix; sparse linear system
GAMS: D2a4
LU factorization of real sparse matrix
Names: f11mef; nagf_sparse_direct_real_gen_lu
Keywords: discretised system; LU decomposition; real, sparse matrix; sparse linear system
GAMS: D2a4
Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
Names: f11mfc; nag_superlu_solve_lu
Keywords: discretised system; linear equations; real, sparse matrix; sparse linear system
GAMS: D2a4
Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
Names: f11mff; nagf_sparse_direct_real_gen_solve
Keywords: discretised system; linear equations; real, sparse matrix; sparse linear system
GAMS: D2a4
Estimate condition number of real matrix, matrix already factorized by f11mec
Names: f11mgc; nag_superlu_condition_number_lu
Keywords: condition number, matrix; real, sparse matrix
GAMS: D2a4
Estimate condition number of real matrix, matrix already factorized by f11mef
Names: f11mgf; nagf_sparse_direct_real_gen_cond
Keywords: condition number, matrix; real, sparse matrix
GAMS: D2a4
Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f11mhc; nag_superlu_refine_lu
Keywords: backward error; forward error; linear equations; real, sparse matrix
GAMS: D2a4
Refined solution with error bounds of real system of linear equations, multiple right-hand sides
Names: f11mhf; nagf_sparse_direct_real_gen_refine
Keywords: backward error; forward error; linear equations; real, sparse matrix
GAMS: D2a4
Real sparse nonsymmetric matrix-matrix multiply, compressed column storage
Names: f11mkc; nag_superlu_matrix_product
Keywords: multiply, matrix; real, sparse matrix
GAMS: D2e
Real sparse nonsymmetric matrix-matrix multiply, compressed column storage
Names: f11mkf; nagf_sparse_direct_real_gen_matmul
Keywords: multiply, matrix; real, sparse matrix
GAMS: D2e
1-norm, -norm, largest absolute element, real, square, sparse matrix
Names: f11mlc; nag_superlu_matrix_norm
Keywords: 1-norm; absolute value; infinity-norm; norm, matrix; real, sparse matrix
GAMS: D1b2
1-norm, -norm, largest absolute element, real, square, sparse matrix
Names: f11mlf; nagf_sparse_direct_real_gen_norm
Keywords: 1-norm; absolute value; infinity-norm; norm, matrix; real, sparse matrix
GAMS: D1b2
Real, sparse, nonsymmetric matrix-vector multiply
Names: f11xac; nag_sparse_nsym_matvec
Keywords: multiply, matrix; real, sparse matrix
GAMS: D1b4, D2e
Real, sparse, nonsymmetric matrix-vector multiply
Names: f11xaf; nagf_sparse_real_gen_matvec
Keywords: multiply, matrix; real, sparse matrix
GAMS: D1b4, D2e
Real sparse symmetric matrix-vector multiply
Names: f11xec; nag_sparse_sym_matvec
Keywords: multiply, matrix; real, sparse, symmetric matrix
GAMS: D1b4, D2e
Real sparse symmetric matrix-vector multiply
Names: f11xef; nagf_sparse_real_symm_matvec
Keywords: multiply, matrix; real, sparse, symmetric matrix
GAMS: D1b4, D2e
Complex sparse non-Hermitian matrix-vector multiply
Names: f11xnc; nag_sparse_nherm_matvec
Keywords: complex, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Complex sparse non-Hermitian matrix-vector multiply
Names: f11xnf; nagf_sparse_complex_gen_matvec
Keywords: complex, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Complex sparse Hermitian matrix-vector multiply
Names: f11xsc; nag_sparse_herm_matvec
Keywords: complex, Hermitian, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Complex sparse Hermitian matrix-vector multiply
Names: f11xsf; nagf_sparse_complex_herm_matvec
Keywords: complex, Hermitian, sparse matrix; multiply, matrix
GAMS: D1b4, D2e
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, reverse communication
Names: f12abc; nag_real_sparse_eigensystem_iter
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, reverse communication
Names: f12abf; nagf_sparseig_real_iter
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, postprocessing for f12abc
Names: f12acc; nag_real_sparse_eigensystem_sol
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse eigenproblem, postprocessing for f12abf
Names: f12acf; nagf_sparseig_real_proc
Keywords: eigenproblem; eigenvalues; eigenvectors; real, sparse matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded eigenproblem, driver
Names: f12agc; nag_real_banded_sparse_eigensystem_sol
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded eigenproblem, driver
Names: f12agf; nagf_sparseig_real_band_solve
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, reverse communication
Names: f12apc; nag_complex_sparse_eigensystem_iter
Keywords: complex, sparse matrix; eigenvalues; eigenvectors; sparse eigenproblem; sparse generalized eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, reverse communication
Names: f12apf; nagf_sparseig_complex_iter
Keywords: complex, sparse matrix; eigenvalues; eigenvectors; sparse eigenproblem; sparse generalized eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, postprocessing for f12apc
Names: f12aqc; nag_complex_sparse_eigensystem_sol
Keywords: complex, sparse matrix; sparse eigenproblem, postprocessing
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a complex sparse eigenproblem, postprocessing for f12apf
Names: f12aqf; nagf_sparseig_complex_proc
Keywords: complex, sparse matrix; sparse eigenproblem, postprocessing
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of complex non-Hermitian banded eigenproblem, driver
Names: f12auc; nag_complex_banded_eigensystem_solve
Keywords: complex, band matrix; eigenproblem, banded; eigenvalues; eigenvectors
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of complex non-Hermitian banded eigenproblem, driver
Names: f12auf; nagf_sparseig_complex_band_solve
Keywords: complex, band matrix; eigenproblem, banded; eigenvalues; eigenvectors
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, reverse communication
Names: f12fbc; nag_real_symm_sparse_eigensystem_iter
Keywords: eigenvalues; eigenvectors; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, reverse communication
Names: f12fbf; nagf_sparseig_real_symm_iter
Keywords: eigenvalues; eigenvectors; real, sparse, symmetric matrix; sparse eigenproblem
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, postprocessing for f12fbc
Names: f12fcc; nag_real_symm_sparse_eigensystem_sol
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, postprocessing
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse eigenproblem, postprocessing for f12fbf
Names: f12fcf; nagf_sparseig_real_symm_proc
Keywords: real, sparse, symmetric matrix; sparse eigenproblem, postprocessing
GAMS: D4a7
Selected eigenvalues and, optionally, eigenvectors of a real symmetric banded eigenproblem, driver
Names: f12fgc; nag_real_symm_banded_sparse_eigensystem_sol
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band, symmetric matrix
GAMS: D4a6
Selected eigenvalues and, optionally, eigenvectors of a real symmetric banded eigenproblem, driver
Names: f12fgf; nagf_sparseig_real_symm_band_solve
Keywords: eigenproblem, banded; eigenvalues; eigenvectors; real, band, symmetric matrix
GAMS: D4a6
Set a single option from a string (f12jjc, f12jkc, f12jrc, f12jsc, f12jtc, f12juc and f12jvc)
Names: f12jbc; nag_sparseig_feast_option
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Set a single option from a string (f12jjf, f12jkf, f12jrf, f12jsf, f12jtf, f12juf and f12jvf)
Names: f12jbf; nagf_sparseig_feast_option
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Setup routine for f12jjc and f12jrc. Computes nodes and weights for an elliptical contour, symmetric about the real line
Names: f12jec; nag_sparseig_feast_symm_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Setup routine for f12jjf and f12jrf. Computes nodes and weights for an elliptical contour, symmetric about the real line
Names: f12jef; nagf_sparseig_feast_symm_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Setup routine for f12jkc, f12jsc, f12jtc, f12juc and f12jvc. Computes nodes and weights for an elliptical contour in the complex plane
Names: f12jfc; nag_sparseig_feast_gen_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS:
Setup routine for f12jkf, f12jsf, f12jtf, f12juf and f12jvf. Computes nodes and weights for an elliptical contour in the complex plane
Names: f12jff; nagf_sparseig_feast_gen_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS:
Setup routine for f12jkc, f12jsc, f12jtc, f12juc and f12jvc. Creates nodes and weights for a custom contour in the complex plane
Names: f12jgc; nag_sparseig_feast_custom_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS:
Setup routine for f12jkf, f12jsf, f12jtf, f12juf and f12jvf. Creates nodes and weights for a custom contour in the complex plane
Names: f12jgf; nagf_sparseig_feast_custom_contour
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors; real matrix
GAMS:
Selected eigenvalues and eigenvectors of a real symmetric eigenproblem, reverse communication driver
Names: f12jjc; nag_sparseig_feast_real_symm_solve
Keywords: eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a real symmetric eigenproblem, reverse communication driver
Names: f12jjf; nagf_sparseig_feast_real_symm_solve
Keywords: eigenvalues; eigenvectors; real, symmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a real nonsymmetric eigenproblem, reverse communication driver
Names: f12jkc; nag_sparseig_feast_real_gen_solve
Keywords: eigenvalues; eigenvectors; real, nonsymmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a real nonsymmetric eigenproblem, reverse communication driver
Names: f12jkf; nagf_sparseig_feast_real_gen_solve
Keywords: eigenvalues; eigenvectors; real, nonsymmetric matrix
GAMS:
Selected eigenvalues and eigenvectors of a complex Hermitian eigenproblem, reverse communication driver
Names: f12jrc; nag_sparseig_feast_complex_herm_solve
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex Hermitian eigenproblem, reverse communication driver
Names: f12jrf; nagf_sparseig_feast_complex_herm_solve
Keywords: complex, Hermitian matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex symmetric eigenproblem, reverse communication driver
Names: f12jsc; nag_sparseig_feast_complex_symm_solve
Keywords: complex, symmetric matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex symmetric eigenproblem, reverse communication driver
Names: f12jsf; nagf_sparseig_feast_complex_symm_solve
Keywords: complex, symmetric matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex non-Hermitian eigenproblem, reverse communication driver
Names: f12jtc; nag_sparseig_feast_complex_gen_solve
Keywords: complex, general matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a complex non-Hermitian eigenproblem, reverse communication driver
Names: f12jtf; nagf_sparseig_feast_complex_gen_solve
Keywords: complex, general matrix; eigenvalues; eigenvectors
GAMS:
Selected eigenvalues and eigenvectors of a symmetric polynomial eigenproblem, reverse communication driver
Names: f12juc; nag_sparseig_feast_poly_symm_solve
Keywords: eigenvalues; eigenvectors; Symmetrical polynomial matrix
GAMS: D4a3, D4a7
Selected eigenvalues and eigenvectors of a symmetric polynomial eigenproblem, reverse communication driver
Names: f12juf; nagf_sparseig_feast_poly_symm_solve
Keywords: eigenvalues; eigenvectors; Symmetrical polynomial matrix
GAMS: D4a3, D4a7
Selected eigenvalues and eigenvectors of a nonsymmetric polynomial eigenproblem, reverse communication driver
Names: f12jvc; nag_sparseig_feast_poly_gen_solve
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3, D4a7
Selected eigenvalues and eigenvectors of a nonsymmetric polynomial eigenproblem, reverse communication driver
Names: f12jvf; nagf_sparseig_feast_poly_gen_solve
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3, D4a7
Destroy the data handle initialized by f12jac and deallocate all the memory used
Names: f12jzc; nag_sparseig_feast_free
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3, D4a7
Destroy the data handle initialized by f12jaf and deallocate all the memory used
Names: f12jzf; nagf_sparseig_feast_free
Keywords: eigenvalues; eigenvectors; general polynomial matrix
GAMS: D4a3, D4a7
Dot product of two vectors, allows scaling and accumulation
Names: f16eac; nag_ddot
Keywords: dot product; inner product
GAMS: D1a4
Dot product of two vectors, allows scaling and accumulation
Names: f16eaf; nagf_blast_ddot; blas_ddot
Keywords: dot product; inner product
GAMS: D1a4
Real weighted vector addition
Names: f16ecc; nag_daxpby
Keywords: blas; blas_daxpby; sum, vector
GAMS: D1a11
Real weighted vector addition
Names: f16ecf; nagf_blast_daxpby; blas_daxpby
Keywords: blas; blas_daxpby; sum, vector
GAMS: D1a11
Complex weighted vector addition
Names: f16gcc; nag_zaxpby
Keywords: blas; blas_zaxpby; sum, vector
GAMS: D1a11
Complex weighted vector addition
Names: f16gcf; nagf_blast_zaxpby; blas_zaxpby
Keywords: blas; blas_zaxpby; sum, vector
GAMS: D1a11
Matrix-matrix product, two real rectangular matrices
Names: f16yac; nag_dgemm; dgemm
Keywords: blas, real matrices; dgemm; multiply, matrix; real, m×n matrix
GAMS: D1b6
Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
Names: f16ycc; nag_dsymm; dsymm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, m×n matrix; real, symmetric matrix
GAMS: D1b6
Matrix-matrix product, one real triangular matrix, one real rectangular matrix
Names: f16yfc; nag_dtrmm; dtrmm
Keywords: blas, real matrices; dsymm; multiply, matrix; real, m×n matrix; real, triangular matrix
GAMS: D1b6
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
Names: f16yjc; nag_dtrsm; dtrsm
Keywords: blas; dtrsm; linear equations; multiple right-hand side; real, triangular, matrix; real matrices
GAMS: D2a3
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format
Names: f16ylc; nag_dtfsm; dtfsm
Keywords: BLAS; blas, real matrices; dtfsm; linear algebra support routines;; linear equations; real, triangular matrix; Rectangular Full Packed format; RFP
GAMS: D2a3
Rank-k update of a real symmetric matrix
Names: f16ypc; nag_dsyrk; dsyrk
Keywords: blas, real matrices; dsyrk; rank-k matrix updates; real, symmetric matrix
GAMS: D1b5
Rank-k update of a real symmetric matrix, Rectangular Full Packed format
Names: f16yqc; nag_dsfrk; dsfrk
Keywords: dsfrk; rank-k matrix updates; real, symmetric matrix; Rectangular Full Packed format; RFP
GAMS: D1b5
Rank-2k update of a real symmetric matrix
Names: f16yrc; nag_dsyr2k; dsyr2k
Keywords: blas, real matrices; dsyr2k; rank-2k matrix updates; real, symmetric matrix
GAMS: D1b5
Matrix-matrix product, two complex rectangular matrices
Names: f16zac; nag_zgemm; zgemm
Keywords: blas, complex matrices; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
Names: f16zcc; nag_zhemm; zhemm
Keywords: blas, complex matrices; complex, Hermitian, matrix; complex, m×n matrix; multiply, matrix; zgemm
GAMS: D1b6
Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
Names: f16zfc; nag_ztrmm; ztrmm
Keywords: blas, complex matrices; complex, m×n matrix; complex, triangular matrix; multiply, matrix; ztrmm
GAMS: D1b6
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
Names: f16zjc; nag_ztrsm; ztrsm
Keywords: blas, complex matrices; complex, triangular matrix; linear equations; multiple right-hand sides; ztrsm
GAMS: D2a3
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format
Names: f16zlc; nag_ztfsm; ztfsm
Keywords: BLAS; blas, complex matrices; complex, triangular matrix; linear algebra support routines;; linear equations; Rectangular Full Packed format; RFP; ztfsm
GAMS: D2c3
Rank-k update of a complex Hermitian matrix
Names: f16zpc; nag_zherk; zherk
Keywords: blas, complex matrices; complex, Hermitian, matrix; rank-k matrix updates; zherk
GAMS: D1b5
Rank-k update of a complex Hermitian matrix, Rectangular Full Packed format
Names: f16zqc; nag_zhfrk; zhfrk
Keywords: complex, Hermitian matrix; rank-k matrix updates; Rectangular Full Packed format; RFP; zhfrk
GAMS: D1b5
Rank-2k update of a complex Hermitian matrix
Names: f16zrc; nag_zher2k; zher2k
Keywords: blas, complex matrices; complex, Hermitian, matrix; rank-2k matrix updates; zher2k
GAMS: D1b5
Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
Names: f16ztc; nag_zsymm; zsymm
Keywords: blas, complex matrices; complex, m×n matrix; complex, symmetric matrix; multiply, matrix; zsymm
GAMS: D1b6
Rank-k update of a complex symmetric matrix
Names: f16zuc; nag_zsyrk; zsyrk
Keywords: blas, complex matrices; complex, symmetric, matrix; rank-k matrix updates; zsyrk
GAMS: D1b5
Rank-2k update of a complex symmetric matrix
Names: f16zwc; nag_zsyr2k; zher2k
Keywords: blas, complex matrices; complex, symmetric, matrix; rank-2k matrix updates; zsyr2k
GAMS: D1b5
Calculates approximate quantiles from a data stream of known size
Names: g01anc; nag_approx_quantiles_fixed
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Calculates approximate quantiles from a data stream of known size
Names: g01anf; nagf_stat_quantiles_stream_fixed
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Calculates approximate quantiles from a data stream of unknown size
Names: g01apc; nag_approx_quantiles_arbitrary
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Calculates approximate quantiles from a data stream of unknown size
Names: g01apf; nagf_stat_quantiles_stream_arbitrary
Keywords: big data; data analytics; data stream; quantiles; streaming
GAMS: L1a1
Constructs a stem and leaf plot
Names: g01arf; nagf_stat_plot_stem_leaf
Keywords: stem stem and leaf plot
GAMS: L3a3, Q
Computes univariate summary information: mean, variance, skewness, kurtosis
Names: g01atc; nag_summary_stats_onevar
Keywords: big data; data analytics; data stream; kurtosis; maximum value; mean; minimum value; skewness; standard deviation; streaming
GAMS: L1a1
Computes univariate summary information: mean, variance, skewness, kurtosis
Names: g01atf; nagf_stat_summary_onevar
Keywords: big data; data analytics; data stream; kurtosis; maximum value; mean; minimum value; skewness; standard deviation; streaming
GAMS: L1a1
Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
Names: g01dhc; nag_ranks_and_scores
Keywords: Blom scores; exponential scores; finance; rank scores; Savage scores; Tukey scores; van der Waerden scores
GAMS: L4a1a2n, N6a1b
Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
Names: g01dhf; nagf_stat_ranks_and_scores
Keywords: Blom scores; exponential scores; finance; rank scores; Savage scores; Tukey scores; van der Waerden scores
GAMS: L4a1a2n, N6a1b
Computes probability for the Studentized range statistic
Names: g01emc; nag_prob_studentized_range
Keywords: CDF, cumulative distribution function; finance; probability; Studentized range statistic
GAMS: L5a1
Computes probability for the Studentized range statistic
Names: g01emf; nagf_stat_prob_studentized_range
Keywords: CDF, cumulative distribution function; finance; probability; Studentized range statistic
GAMS: L5a1
Computes probabilities for the Dickey–Fuller unit root test
Names: g01ewc; nag_prob_dickey_fuller_unit
Keywords: Dickey–Fuller ; probabilities; statistical distribution functions; unit root
GAMS: L5a1
Computes probabilities for the Dickey–Fuller unit root test
Names: g01ewf; nagf_stat_prob_dickey_fuller_unit
Keywords: Dickey–Fuller ; probabilities; statistical distribution functions; unit root
GAMS: L5a1
Computes deviates for the Studentized range statistic
Names: g01fmc; nag_deviates_studentized_range
Keywords: deviates; finance; inverse CDF; inverse cumulative distribution function; Studentized range statistic
GAMS: L5a2
Computes deviates for the Studentized range statistic
Names: g01fmf; nagf_stat_inv_cdf_studentized_range
Keywords: deviates; finance; inverse CDF; inverse cumulative distribution function; Studentized range statistic
GAMS: L5a2
Probability for the bivariate Normal distribution
Names: g01hac; nag_bivariate_normal_dist
Keywords: bivariate Normal distribution; finance; lower tail probability; Normal distribution
GAMS: L5b1n
Computes probability for the bivariate Normal distribution
Names: g01haf; nagf_stat_prob_bivariate_normal
Keywords: bivariate Normal distribution; finance; lower tail probability; Normal distribution
GAMS: L5b1n
Computes probabilities for the multivariate Normal distribution
Names: g01hbc; nag_multi_normal
Keywords: central probability; finance; lower tail probability; multivariate Normal distribution; Normal distribution; upper tail probability
GAMS: L5b1n
Computes probabilities for the multivariate Normal distribution
Names: g01hbf; nagf_stat_prob_multi_normal
Keywords: central probability; finance; lower tail probability; multivariate Normal distribution; Normal distribution; upper tail probability
GAMS: L5b1n
Computes the probability for the multivariate Student's t-distribution
Names: g01hdc; nag_multi_students_t
Keywords: multivariate Student's t-distribution; probability; Student's t-distribution
GAMS: L5b1
Computes the probability for the multivariate Student's t-distribution
Names: g01hdf; nagf_stat_prob_multi_students_t
Keywords: multivariate Student's t-distribution; probability; Student's t-distribution
GAMS: L5b1
Computes lower tail probability for a linear combination of (central) χ2 variables
Names: g01jdc; nag_prob_lin_chi_sq
Keywords: chi-squared distribution; finance; Imhof's method; lower tail probability; Pan's method
GAMS: L5a1
Computes lower tail probability for a linear combination of (central) χ2 variables
Names: g01jdf; nagf_stat_prob_chisq_lincomb
Keywords: chi-squared distribution; finance; Imhof's method; lower tail probability; Pan's method
GAMS: L5a1
Computes a vector of values for the probability density function of the multivariate Normal distribution
Names: g01lbc; nag_multi_normal_pdf_vector
Keywords: Gaussian distribution; logarithm, pdf; multivariate Normal distribution; Normal distribution; pdf; probability density function
GAMS: L5b1n
Computes a vector of values for the probability density function of the multivariate Normal distribution
Names: g01lbf; nagf_stat_pdf_multi_normal_vector
Keywords: Gaussian distribution; logarithm, pdf; multivariate Normal distribution; Normal distribution; pdf; probability density function
GAMS: L5b1n
Cumulants and moments of quadratic forms in Normal variables
Names: g01nac; nag_moments_quad_form
Keywords: cumulant; finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Cumulants and moments of quadratic forms in Normal variables
Names: g01naf; nagf_stat_moments_quad_form
Keywords: cumulant; finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Moments of ratios of quadratic forms in Normal variables, and related statistics
Names: g01nbc; nag_moments_ratio_quad_forms
Keywords: finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Moments of ratios of quadratic forms in Normal variables, and related statistics
Names: g01nbf; nagf_stat_moments_ratio_quad_forms
Keywords: finance; Gaussian distribution; moments quadratic form; multivariate Normal distribution; Normal distribution
GAMS: L5b
Computes the mean and standard deviation using a rolling window
Names: g01wac; nag_moving_average
Keywords: big data; data analytics; data stream; mean; moving average; standard deviation; streaming
GAMS: L1a1
Computes the mean and standard deviation using a rolling window
Names: g01waf; nagf_stat_moving_average
Keywords: big data; data analytics; data stream; mean; moving average; standard deviation; streaming
GAMS: L1a1
Computes the nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02aac; nag_nearest_correlation
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02aaf; nagf_correg_corrmat_nearest
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, augmenting g02aac to incorporate weights and bounds
Names: g02abc; nag_nearest_correlation_bounded
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, augmenting g02aaf to incorporate weights and bounds
Names: g02abf; nagf_correg_corrmat_nearest_bounded
Keywords: correlation matrix; finance; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix with k-factor structure to a real square matrix
Names: g02aec; nag_nearest_correlation_k_factor
Keywords: correlation matrix; finance; k-factor structure; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix with k-factor structure to a real square matrix
Names: g02aef; nagf_correg_corrmat_nearest_kfactor
Keywords: correlation matrix; finance; k-factor structure; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, using element-wise weighting
Names: g02ajc; nag_nearest_correlation_h_weight
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, using element-wise weighting
Names: g02ajf; nagf_correg_corrmat_h_weight
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm
GAMS: L1c1b
Computes the rank-constrained nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02akc; nag_correg_corrmat_nearest_rank
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm; rank-constrained
GAMS: L1c1b
Computes the rank-constrained nearest correlation matrix to a real square matrix, using the method of Qi and Sun
Names: g02akf; nagf_correg_corrmat_nearest_rank
Keywords: correlation matrix; nearest correlation matrix; Qi and Sun algorithm; rank-constrained
GAMS: L1c1b
Computes a correlation matrix from an approximate matrix with fixed submatrix
Names: g02anc; nag_nearest_correlation_shrinking
Keywords: correlation matrix; nearest correlation matrix; shrinking method
GAMS: L1c1b
Computes a correlation matrix from an approximate matrix with fixed submatrix
Names: g02anf; nagf_correg_corrmat_shrinking
Keywords: correlation matrix; nearest correlation matrix; shrinking method
GAMS: L1c1b
Computes a correlation matrix from an approximate one using a specified target matrix
Names: g02apc; nag_nearest_correlation_target
Keywords: correlation matrix; elementwise weights; nearest correlation matrix; shrinkage; shrinking method
GAMS: L1c1b
Computes a correlation matrix from an approximate one using a specified target matrix
Names: g02apf; nagf_correg_corrmat_target
Keywords: correlation matrix; elementwise weights; nearest correlation matrix; shrinkage; shrinking method
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, with fixed elements
Names: g02asc; nag_correg_corrmat_fixed
Keywords: alternating projections; Anderson acceleration; correlation matrix; nearest correlation matrix
GAMS: L1c1b
Computes the nearest correlation matrix to a real square matrix, with fixed elements
Names: g02asf; nagf_correg_corrmat_fixed
Keywords: alternating projections; Anderson acceleration; correlation matrix; nearest correlation matrix
GAMS: L1c1b
Pearson product-moment correlation coefficients, all variables, no missing values
Names: g02baf; nagf_correg_coeffs_pearson
Keywords: correlation coefficients; finance; Pearson product moment correlation
GAMS: L1c1b
Pearson product-moment correlation coefficients, all variables, casewise treatment of missing values
Names: g02bbf; nagf_correg_coeffs_pearson_miss_case
Keywords: correlation coefficients; finance; missing values; Pearson product moment correlation
GAMS: L1c2
Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values
Names: g02bcf; nagf_correg_coeffs_pearson_miss_pair
Keywords: correlation coefficients; finance; missing values; Pearson product moment correlation
GAMS: L1c2
Correlation-like coefficients (about zero), all variables, no missing values
Names: g02bdf; nagf_correg_coeffs_zero
Keywords: correlation-like coefficients; cross-products; finance; mean; standard deviation; sum of squares
GAMS: L1c1
Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
Names: g02bef; nagf_correg_coeffs_zero_miss_case
Keywords: correlation-like coefficients; cross-products; finance; mean; missing values; standard deviation; sum of squares
GAMS: L1c2
Pearson product-moment correlation coefficients, subset of variables, no missing values
Names: g02bgf; nagf_correg_coeffs_pearson_subset
Keywords: cross-products; finance; mean; Pearson product moment correlation; standard deviation; sum of squares
GAMS: L1c1b
Pearson product-moment correlation coefficients, subset of variables, casewise treatment of missing values
Names: g02bhf; nagf_correg_coeffs_pearson_subset_miss_case
Keywords: cross-products; finance; mean; missing values; Pearson product moment correlation; standard deviation; sum of squares
GAMS: L1c2
Correlation-like coefficients (about zero), subset of variables, no missing values
Names: g02bkf; nagf_correg_coeffs_zero_subset
Keywords: correlation-like coefficients; cross-products; finance; mean; standard deviation; sum of squares
GAMS: L1c1
Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
Names: g02blf; nagf_correg_coeffs_zero_subset_miss_case
Keywords: correlation-like coefficients; cross-products; finance; mean; missing values; standard deviation; sum of squares
GAMS: L1c2
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
Names: g02bnf; nagf_correg_coeffs_kspearman_overwrite
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; Spearman's rank correlation coefficients
GAMS: L1c1b
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, overwriting input data
Names: g02bpf; nagf_correg_coeffs_kspearman_miss_case_overwrite
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; missing values; Spearman's rank correlation coefficients
GAMS: L1c2
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data
Names: g02bqf; nagf_correg_coeffs_kspearman
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; Spearman's rank correlation coefficients
GAMS: L1c1b
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, preserving input data
Names: g02brf; nagf_correg_coeffs_kspearman_miss_case
Keywords: correlation coefficients; finance; Kendall's tau correlation coefficient; missing values; Spearman's rank correlation coefficients
GAMS: L1c2
Computes a weighted sum of squares matrix
Names: g02buc; nag_sum_sqs
Keywords: cross-products; finance; mean; sum of squares; West's WV2 algorithm
GAMS: L1c1b
Computes a weighted sum of squares matrix
Names: g02buf; nagf_correg_ssqmat
Keywords: cross-products; finance; mean; sum of squares; West's WV2 algorithm
GAMS: L1c1b
Computes (optionally weighted) correlation and covariance matrices
Names: g02bxf; nagf_correg_corrmat
Keywords: finance; mean; Pearson product moment correlation; standard deviation; variance-covariance matrix
GAMS: L1c1b
Computes partial correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by g02bxf
Names: g02byf; nagf_correg_corrmat_partial
Keywords: finance; partial correlation
GAMS: L1c1b
Combines two sums of squares matrices, for use after g02buc
Names: g02bzc; nag_sum_sqs_combine
Keywords: cross-products; data stream; mean; streaming; sum of squares
GAMS: L1c1b
Combines two sums of squares matrices, for use after g02buf
Names: g02bzf; nagf_correg_ssqmat_combine
Keywords: cross-products; data stream; mean; streaming; sum of squares
GAMS: L1c1b
Multiple linear regression, from correlation coefficients, with constant term
Names: g02cgf; nagf_correg_linregm_coeffs_const
Keywords: finance; multiple linear regression
GAMS: L8c1b2
Multiple linear regression, from correlation-like coefficients, without constant term
Names: g02chf; nagf_correg_linregm_coeffs_noconst
Keywords: finance; multiple linear regression
GAMS: L8c1b2
Fits a general (multiple) linear regression model
Names: g02daf; nagf_correg_linregm_fit
Keywords: finance; multiple linear regression
GAMS: L7f, L8c1b1
Add/delete an observation to/from a general linear regression model
Names: g02dcf; nagf_correg_linregm_obs_edit
Keywords: finance; linear regression; regression; standard errors; variance-covariance matrix
GAMS: L8c1b1
Estimates of linear parameters and general linear regression model from updated model
Names: g02ddf; nagf_correg_linregm_update
Keywords: finance; linear regression; regression
GAMS: L8c1a1, L8c1b1
Add a new independent variable to a general linear regression model
Names: g02dec; nag_regsn_mult_linear_add_var
Keywords: finance; linear regression
GAMS: L8c1a1, L8c1b1
Add a new independent variable to a general linear regression model
Names: g02def; nagf_correg_linregm_var_add
Keywords: finance; linear regression
GAMS: L8c1a1, L8c1b1
Delete an independent variable from a general linear regression model
Names: g02dff; nagf_correg_linregm_var_del
Keywords: finance; linear regression
GAMS: L8c1a1, L8c1b1
Fits a general linear regression model to new dependent variable
Names: g02dgf; nagf_correg_linregm_fit_newvar
Keywords: finance; linear regression
GAMS: L8c2
Estimates and standard errors of parameters of a general linear regression model for given constraints
Names: g02dkf; nagf_correg_linregm_constrain
Keywords: finance; linear regression; standard errors
GAMS: L8c1b1
Computes estimable function of a general linear regression model and its standard error
Names: g02dnf; nagf_correg_linregm_estfunc
Keywords: estimable function; finance; linear regression
GAMS: L7f, L8c1b1, L8c1d
Computes residual sums of squares for all possible linear regressions for a set of independent variables
Names: g02eac; nag_all_regsn
Keywords: sum of squares
GAMS: L8c1a1
Computes residual sums of squares for all possible linear regressions for a set of independent variables
Names: g02eaf; nagf_correg_linregm_rssq
Keywords: sum of squares
GAMS: L8c1a1
Fits a linear regression model by forward selection
Names: g02eec; nag_step_regsn
Keywords: linear regression
GAMS: L8c1a1
Fits a linear regression model by forward selection
Names: g02eef; nagf_correg_linregm_fit_onestep
Keywords: linear regression
GAMS: L8c1a1
Computes Durbin–Watson test statistic
Names: g02fcc; nag_durbin_watson_stat
Keywords: Durbin–Watson statistic; finance; significance
GAMS: L8c1d
Computes Durbin–Watson test statistic
Names: g02fcf; nagf_correg_linregm_stat_durbwat
Keywords: Durbin–Watson statistic; finance; significance
GAMS: L8c1d
Fits a generalized linear model with Normal errors
Names: g02gaf; nagf_correg_glm_normal
Keywords: finance; generalized linear model
GAMS: L8e1b
Fits a generalized linear model with binomial errors
Names: g02gbf; nagf_correg_glm_binomial
Keywords: finance; generalized linear model; logistic regression; logit; probit
GAMS: L8e
Fits a generalized linear model with Poisson errors
Names: g02gcf; nagf_correg_glm_poisson
Keywords: finance; generalized linear model
GAMS: L8e, L9c
Fits a generalized linear model with gamma errors
Names: g02gdf; nagf_correg_glm_gamma
Keywords: finance; generalized linear model
GAMS: L8e
Estimates and standard errors of parameters of a general linear model for given constraints
Names: g02gkf; nagf_correg_glm_constrain
Keywords: finance; generalized linear model; standard errors
GAMS: L8e, L9c
Computes estimable function of a generalized linear model and its standard error
Names: g02gnf; nagf_correg_glm_estfunc
Keywords: estimable function; finance; generalized linear model
GAMS: L8e, L9c
Computes a predicted value and its associated standard error based on a previously fitted generalized linear model
Names: g02gpc; nag_glm_predict
Keywords: finance; generalized linear model; predicted value; standard errors
GAMS: L8c
Computes a predicted value and its associated standard error based on a previously fitted generalized linear model
Names: g02gpf; nagf_correg_glm_predict
Keywords: finance; generalized linear model; predicted value; standard errors
GAMS: L8c
Robust regression, standard M-estimates
Names: g02haf; nagf_correg_robustm
Keywords: Andrew's sine wave; finance; Hampel's piecewise linear function; Huber type regression; Krasker–Welsch weights; Mallows type regression; Maronna's weights; M-estimates; regression; robust regression; Scheppe type regression; Tukey's bi-weight
GAMS: L8c4
Robust regression, compute weights for use with g02hdc
Names: g02hbc; nag_robust_m_regsn_wts
Keywords: bounded influence; finance; robust regression
GAMS: L8c4
Robust regression, compute weights for use with g02hdf
Names: g02hbf; nagf_correg_robustm_wts
Keywords: bounded influence; finance; robust regression
GAMS: L8c4
Robust regression, compute regression with user-supplied functions and weights
Names: g02hdc; nag_robust_m_regsn_user_fn
Keywords: bounded influence; finance; iterative weighted least squares; M-estimates; robust regression
GAMS: L8c4
Robust regression, compute regression with user-supplied functions and weights
Names: g02hdf; nagf_correg_robustm_user
Keywords: bounded influence; finance; iterative weighted least squares; M-estimates; robust regression
GAMS: L8c4
Robust regression, variance-covariance matrix following g02hdc
Names: g02hfc; nag_robust_m_regsn_param_var
Keywords: finance; robust regression; variance-covariance matrix
GAMS: L8c4
Robust regression, variance-covariance matrix following g02hdf
Names: g02hff; nagf_correg_robustm_user_varmat
Keywords: finance; robust regression; variance-covariance matrix
GAMS: L8c4
Robust estimation of a covariance matrix, Huber's weight function
Names: g02hkc; nag_robust_corr_estim
Keywords: correlation matrix; finance; Huber's weight function
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, Huber's weight function
Names: g02hkf; nagf_correg_robustm_corr_huber
Keywords: correlation matrix; finance; Huber's weight function
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function plus derivatives
Names: g02hlc; nag_robust_m_corr_user_fn
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function plus derivatives
Names: g02hlf; nagf_correg_robustm_corr_user_deriv
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function
Names: g02hmc; nag_robust_m_corr_user_fn_no_derr
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Calculates a robust estimation of a covariance matrix, user-supplied weight function
Names: g02hmf; nagf_correg_robustm_corr_user
Keywords: correlation matrix; finance; robust estimation
GAMS: L1c1b
Linear mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jac; nag_reml_mixed_regsn
Keywords: finance; maximum likelihood; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Linear mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jaf; nagf_correg_mixeff_reml
Keywords: finance; maximum likelihood; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Linear mixed effects regression using Maximum Likelihood (ML)
Names: g02jbc; nag_ml_mixed_regsn
Keywords: finance; maximum likelihood; mixed effects regression
GAMS: L8c
Linear mixed effects regression using Maximum Likelihood (ML)
Names: g02jbf; nagf_correg_mixeff_ml
Keywords: finance; maximum likelihood; mixed effects regression
GAMS: L8c
Hierarchical mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jdc; nag_reml_hier_mixed_regsn
Keywords: hierarchical mixed effects regression; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Hierarchical mixed effects regression using Restricted Maximum Likelihood (REML)
Names: g02jdf; nagf_correg_mixeff_hier_reml
Keywords: hierarchical mixed effects regression; mixed effects regression; REML, Restricted Maximum Likelihood
GAMS: L8c
Hierarchical mixed effects regression using Maximum Likelihood (ML)
Names: g02jec; nag_ml_hier_mixed_regsn
Keywords: hierarchical mixed effects regression; maximum likelihood; mixed effects regression
GAMS: L8c
Hierarchical mixed effects regression using Maximum Likelihood (ML)
Names: g02jef; nagf_correg_mixeff_hier_ml
Keywords: hierarchical mixed effects regression; maximum likelihood; mixed effects regression
GAMS: L8c
Linear mixed effects regression, initialization routine for g02jhc
Names: g02jfc; nag_correg_lmm_init
Keywords: mixed effects regression
GAMS: L8c
Linear mixed effects regression, initialization routine for g02jhf
Names: g02jff; nagf_correg_lmm_init
Keywords: mixed effects regression
GAMS: L8c
Linear mixed effects regression using either Restricted Maximum Likelihood (REML) or Maximum Likelihood (ML)
Names: g02jhc; nag_correg_lmm_fit
Keywords: linear mixed effects regression; mixed effects regression; ML, Maximum Likelihood; REML, Restricted Maximum Likelihood
GAMS: L8c
Linear mixed effects regression using either Restricted Maximum Likelihood (REML) or Maximum Likelihood (ML)
Names: g02jhf; nagf_correg_lmm_fit
Keywords: linear mixed effects regression; mixed effects regression; ML, Maximum Likelihood; REML, Restricted Maximum Likelihood
GAMS: L8c
Ridge regression, optimizing a ridge regression parameter
Names: g02kac; nag_regsn_ridge_opt
Keywords: finance; ridge regression
GAMS: L8e2
Ridge regression, optimizing a ridge regression parameter
Names: g02kaf; nagf_correg_ridge_opt
Keywords: finance; ridge regression
GAMS: L8e2
Ridge regression using a number of supplied ridge regression parameters
Names: g02kbc; nag_regsn_ridge
Keywords: finance; ridge regression
GAMS: L8e2
Ridge regression using a number of supplied ridge regression parameters
Names: g02kbf; nagf_correg_ridge
Keywords: finance; ridge regression
GAMS: L8e2
Partial least squares (PLS) regression using singular value decomposition
Names: g02lac; nag_pls_orth_scores_svd
Keywords: finance; partial least squares regression
GAMS: L8c1c
Partial least squares (PLS) regression using singular value decomposition
Names: g02laf; nagf_correg_pls_svd
Keywords: finance; partial least squares regression
GAMS: L8c1c
Partial least squares (PLS) regression using Wold's iterative method
Names: g02lbc; nag_pls_orth_scores_wold
Keywords: finance; partial least squares regression; Wold's iterative method
GAMS: L8c1c
Partial least squares (PLS) regression using Wold's iterative method
Names: g02lbf; nagf_correg_pls_wold
Keywords: finance; partial least squares regression; Wold's iterative method
GAMS: L8c1c
PLS parameter estimates following partial least squares regression by g02lac or g02lbc
Names: g02lcc; nag_pls_orth_scores_fit
Keywords: finance; partial least squares regression
GAMS: L8c1c
PLS parameter estimates following partial least squares regression by g02laf or g02lbf
Names: g02lcf; nagf_correg_pls_fit
Keywords: finance; partial least squares regression
GAMS: L8c1c
PLS predictions based on parameter estimates from g02lcc
Names: g02ldc; nag_pls_orth_scores_pred
Keywords: finance; partial least squares regression
GAMS: L8c1c
PLS predictions based on parameter estimates from g02lcf
Names: g02ldf; nagf_correg_pls_pred
Keywords: finance; partial least squares regression
GAMS: L8c1c
Least angle regression (LARS), least absolute shrinkage and selection operator (LASSO) and forward stagewise regression
Names: g02mac; nag_lars
Keywords: forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Least angle regression (LARS), least absolute shrinkage and selection operator (LASSO) and forward stagewise regression
Names: g02maf; nagf_correg_lars
Keywords: forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) and forward stagewise regression using the cross-products matrix
Names: g02mbc; nag_lars_xtx
Keywords: cross-product; forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) and forward stagewise regression using the cross-products matrix
Names: g02mbf; nagf_correg_lars_xtx
Keywords: cross-product; forward stagewise; LARS; LASSO; least angle regression; model selection
GAMS: L8c3
Calculates additional parameter estimates following Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) or forward stagewise regression
Names: g02mcc; nag_lars_param
Keywords: forward stagewise; LARS; LASSO; least angle regression
GAMS: L8c3
Calculates additional parameter estimates following Least Angle Regression (LARS), Least Absolute Shrinkage and Selection Operator (LASSO) or forward stagewise regression
Names: g02mcf; nagf_correg_lars_param
Keywords: forward stagewise; LARS; LASSO; least angle regression
GAMS: L8c3
Linear quantile regression, simple interface, independent, identically distributed (IID) errors
Names: g02qfc; nag_regsn_quant_linear_iid
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Linear quantile regression, simple interface, independent, identically distributed (IID) errors
Names: g02qff; nagf_correg_quantile_linreg_easy
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Linear quantile regression, comprehensive interface
Names: g02qgc; nag_regsn_quant_linear
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Linear quantile regression, comprehensive interface
Names: g02qgf; nagf_correg_quantile_linreg
Keywords: finance; linear quantile regression; quantile regression
GAMS: L8c3
Performs principal component analysis
Names: g03aaf; nagf_mv_prin_comp
Keywords: big data; data analytics; finance; principal component analysis
GAMS: L13b
Performs canonical variate analysis
Names: g03acf; nagf_mv_canon_var
Keywords: canonical discrimination analysis; canonical variate analysis
GAMS: L12, L13c
Performs canonical correlation analysis
Names: g03adf; nagf_mv_canon_corr
Keywords: canonical correlation analysis
GAMS: L13c
Computes orthogonal rotations for loading matrix, generalized orthomax criterion
Names: g03baf; nagf_mv_rot_orthomax
Keywords: canonical variate analysis; factor analysis; orthogonal transformations; orthomax criterion
GAMS: L13a
Procrustes rotations
Names: g03bcc; nag_mv_procustes
Keywords: Procrustes rotations
GAMS: L13a
Computes Procrustes rotations
Names: g03bcf; nagf_mv_rot_procrustes
Keywords: Procrustes rotations
GAMS: L13a
ProMax rotations
Names: g03bdc; nag_mv_promax
Keywords: ProMax rotations
GAMS: L8c1c
ProMax rotations
Names: g03bdf; nagf_mv_rot_promax
Keywords: ProMax rotations
GAMS: L8c1c
Computes maximum likelihood estimates of the parameters of a factor analysis model, factor loadings, communalities and residual correlations
Names: g03caf; nagf_mv_factor
Keywords: communalities, maximum likelihood; factor analysis; factor loadings; maximum likelihood; residual correlations
GAMS: L13a
Computes factor score coefficients (for use after g03caf)
Names: g03ccf; nagf_mv_factor_score
Keywords: factor analysis; factor score coefficients; maximum likelihood
GAMS: L13a
Computes test statistic for equality of within-group covariance matrices and matrices for discriminant analysis
Names: g03daf; nagf_mv_discrim
Keywords: discriminant analysis; test statistic
GAMS: L12
Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after g03daf)
Names: g03dbf; nagf_mv_discrim_mahal
Keywords: discriminant analysis; Mahalanobis distances
GAMS: L12
Allocates observations to groups according to selected rules (for use after g03daf)
Names: g03dcf; nagf_mv_discrim_group
Keywords: discriminant analysis
GAMS: L12
Compute distance (dissimilarity) matrix
Names: g03eac; nag_mv_distance_mat
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Computes distance matrix
Names: g03eaf; nagf_mv_distance_mat
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Compute distance (dissimilarity) matrix for two input matrices
Names: g03ebc; nag_mv_distance_mat_2
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Compute distance (dissimilarity) matrix for two input matrices
Names: g03ebf; nagf_mv_distance_mat_2
Keywords: big data; data analytics; distance matrix
GAMS: L14d
Hierarchical cluster analysis
Names: g03ecf; nagf_mv_cluster_hier
Keywords: big data; cluster analysis; data analytics; hierarchical cluster analysis
GAMS: L14a1a1
Performs principal coordinate analysis, classical metric scaling
Names: g03faf; nagf_mv_multidimscal_metric
Keywords: classical metric scaling; principal coordinate analysis
GAMS: L16
Performs non-metric (ordinal) multidimensional scaling
Names: g03fcf; nagf_mv_multidimscal_ordinal
Keywords: non-metric (ordinal) scaling; ordinal scaling
GAMS: L16
Fits a Gaussian mixture model
Names: g03gac; nag_mv_gaussian_mixture
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Fits a Gaussian mixture model
Names: g03gaf; nagf_mv_gaussian_mixture
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Fits a Gaussian mixture model with results stored in submatrices
Names: g03gbc; nag_mv_gaussian_mixture_ld
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Fits a Gaussian mixture model with results stored in submatrices
Names: g03gbf; nagf_mv_gaussian_mixture_ld
Keywords: cluster analysis; Gaussian mixture model
GAMS: L14a1b
Analysis of variance, randomized block or completely randomized design, treatment means and standard errors
Names: g04bbf; nagf_anova_random
Keywords: ANOVA; completely randomized design; randomized block design; standard errors; treatment means
GAMS: L7a1, L7b
Analysis of variance, general row and column design, treatment means and standard errors
Names: g04bcf; nagf_anova_rowcol
Keywords: ANOVA; standard errors; treatment means
GAMS: L7c
Analysis of variance, complete factorial design, treatment means and standard errors
Names: g04caf; nagf_anova_factorial
Keywords: ANOVA; factorial design; standard errors; treatment means
GAMS: L7d1
Computes confidence intervals for differences between means computed by g04bbf or g04bcf
Names: g04dbf; nagf_anova_confidence
Keywords: confidence interval; design of experiments; experimental design
GAMS: L7a1
Computes orthogonal polynomials or dummy variables for factor/classification variable
Names: g04eaf; nagf_anova_dummyvars
Keywords: classification variable; design of experiments; experimental design; factor variable
GAMS: L7g, L8i
Intraclass correlation (ICC) for assessing rater reliability
Names: g04gac; nag_anova_icc
Keywords: ICC; interrater; intraclass; intrarater; reliability
GAMS: L7
Intraclass correlation (ICC) for assessing rater reliability
Names: g04gaf; nagf_anova_icc
Keywords: ICC; interrater; intraclass; intrarater; reliability
GAMS: L7
Pseudorandom permutation of an integer vector
Names: g05ncc; nag_rand_permute
Keywords: finance; permutation; random permutation
GAMS: L6a16
Pseudorandom permutation of an integer vector
Names: g05ncf; nagf_rand_permute
Keywords: finance; permutation; random permutation
GAMS: L6a16
Pseudorandom sample from an integer vector
Names: g05ndc; nag_rand_sample
Keywords: finance; random sample; sample, random
GAMS: L6a19
Pseudorandom sample from an integer vector
Names: g05ndf; nagf_rand_sample
Keywords: finance; random sample; sample, random
GAMS: L6a19
Pseudorandom sample, without replacement, unequal weights
Names: g05nec; nag_rand_sample_unequal
Keywords: finance; random sample, without replacement; sample, random, without replacement
GAMS: L6a19
Pseudorandom sample, without replacement, unequal weights
Names: g05nef; nagf_rand_sample_wgt
Keywords: finance; random sample, without replacement; sample, random, without replacement
GAMS: L6a19
Pseudorandom resampling, unequal weights
Names: g05nfc; nag_rand_resample
Keywords: finance; random resample; random sample, with replacement; resample, random; sample, random, with replacement
GAMS: L6a19
Pseudorandom resampling, unequal weights
Names: g05nff; nagf_rand_resample
Keywords: finance; random resample; random sample, with replacement; resample, random; sample, random, with replacement
GAMS: L6a19
Generates a realization of a time series from a GARCH process with asymmetry of the form (εt-1+γ)2
Names: g05pdc; nag_rand_agarchi
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from a GARCH process with asymmetry of the form (εt-1+γ)2
Names: g05pdf; nagf_rand_times_garch_asym1
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from a GARCH process with asymmetry of the form ( |εt-1| +γεt-1)2
Names: g05pec; nag_rand_agarchii
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from a GARCH process with asymmetry of the form ( |εt-1| +γεt-1)2
Names: g05pef; nagf_rand_times_garch_asym2
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process
Names: g05pfc; nag_rand_garchgjr
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process
Names: g05pff; nagf_rand_times_garch_gjr
Keywords: finance; GARCH; time series
GAMS: L6a20
Generates a realization of a time series from an exponential GARCH (EGARCH) process
Names: g05pgc; nag_rand_egarch
Keywords: EGARCH; finance; time series
GAMS: L6a20
Generates a realization of a time series from an exponential GARCH (EGARCH) process
Names: g05pgf; nagf_rand_times_garch_exp
Keywords: EGARCH; finance; time series
GAMS: L6a20
Generates a realization of a time series from an ARMA model
Names: g05phc; nag_rand_arma
Keywords: ARMA; finance; time series
GAMS: L6a20
Generates a realization of a time series from an ARMA model
Names: g05phf; nagf_rand_times_arma
Keywords: ARMA; finance; time series
GAMS: L6a20
Generates a realization of a multivariate time series from a VARMA model
Names: g05pjc; nag_rand_varma
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L6b
Generates a realization of a multivariate time series from a VARMA model
Names: g05pjf; nagf_rand_times_mv_varma
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L6b
Generates a realization of a time series from an exponential smoothing model
Names: g05pmc; nag_rand_exp_smooth
Keywords: exponential smoothing; finance; time series
GAMS: L6a20
Generates a realization of a time series from an exponential smoothing model
Names: g05pmf; nagf_rand_times_smooth_exp
Keywords: exponential smoothing; finance; time series
GAMS: L6a20
Permutes a matrix, vector, vector triplet into a form suitable for K-fold cross validation
Names: g05pvc; nag_rand_kfold_xyw
Keywords: cross-validation; CV; jacknife; k-fold; leave-one-out; LOO; permute
GAMS: N8
Permutes a matrix, vector, vector triplet into a form suitable for K-fold cross validation
Names: g05pvf; nagf_rand_kfold_xyw
Keywords: cross-validation; CV; jacknife; k-fold; leave-one-out; LOO; permute
GAMS: N8
Permutes a matrix, vector, vector triplet into a form suitable for random sub-sampling validation
Names: g05pwc; nag_rand_subsamp_xyw
Keywords: cross-validation; permute; resample; sub-sample
GAMS: N8
Permutes a matrix, vector, vector triplet into a form suitable for random sub-sampling validation
Names: g05pwf; nagf_rand_subsamp_xyw
Keywords: cross-validation; permute; resample; sub-sample
GAMS: N8
Generates a random orthogonal matrix
Names: g05pxc; nag_rand_orthog_matrix
Keywords: finance; random orthogonal matrix
GAMS: L6b15
Generates a random orthogonal matrix
Names: g05pxf; nagf_rand_matrix_orthog
Keywords: finance; random orthogonal matrix
GAMS: L6b15
Generates a random correlation matrix
Names: g05pyc; nag_rand_corr_matrix
Keywords: finance; random correlation matrix
GAMS: L6b3
Generates a random correlation matrix
Names: g05pyf; nagf_rand_matrix_corr
Keywords: finance; random correlation matrix
GAMS: L6b3
Generates a random two-way table
Names: g05pzc; nag_rand_2_way_table
Keywords: finance; random two-way table; two-way contingency table
GAMS: L6b
Generates a random two-way table
Names: g05pzf; nagf_rand_matrix_2waytable
Keywords: finance; random two-way table; two-way contingency table
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Student's t-copula
Names: g05rcc; nag_rand_copula_students_t
Keywords: copula; finance; random numbers; student's t-copula
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Student's t-copula
Names: g05rcf; nagf_rand_copula_students_t
Keywords: copula; finance; random numbers; student's t-copula
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gaussian copula
Names: g05rdc; nag_rand_copula_normal
Keywords: copula; finance; Gaussian copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gaussian copula
Names: g05rdf; nagf_rand_copula_normal
Keywords: copula; finance; Gaussian copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Clayton/Cook–Johnson copula
Names: g05rec; nag_rand_bivariate_copula_clayton
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Clayton/Cook–Johnson copula
Names: g05ref; nagf_rand_copula_clayton_bivar
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Frank copula
Names: g05rfc; nag_rand_bivariate_copula_frank
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Frank copula
Names: g05rff; nagf_rand_copula_frank_bivar
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Plackett copula
Names: g05rgc; nag_rand_bivariate_copula_plackett
Keywords: copula; Plackett copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a bivariate Plackett copula
Names: g05rgf; nagf_rand_copula_plackett_bivar
Keywords: copula; Plackett copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Clayton/Cook–Johnson copula
Names: g05rhc; nag_rand_copula_clayton
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Clayton/Cook–Johnson copula
Names: g05rhf; nagf_rand_copula_clayton
Keywords: Clayton/Cook–Johnson copula; copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Frank copula
Names: g05rjc; nag_rand_copula_frank
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Frank copula
Names: g05rjf; nagf_rand_copula_frank
Keywords: copula; Frank copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gumbel–Hougaard copula
Names: g05rkc; nag_rand_copula_gumbel
Keywords: copula; Gumbel–Hougard copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a Gumbel–Hougaard copula
Names: g05rkf; nagf_rand_copula_gumbel
Keywords: copula; Gumbel–Hougard copula; random numbers
GAMS: L6b
Generates a matrix of pseudorandom numbers from a multivariate Student's t-distribution
Names: g05ryc; nag_rand_matrix_multi_students_t
Keywords: finance; multivariate Student's t-distribution; random numbers; Student's t-distribution
GAMS: L6b14
Generates a matrix of pseudorandom numbers from a multivariate Student's t-distribution
Names: g05ryf; nagf_rand_multivar_students_t
Keywords: finance; multivariate Student's t-distribution; random numbers; Student's t-distribution
GAMS: L6b14
Generates a matrix of pseudorandom numbers from a multivariate Normal distribution
Names: g05rzc; nag_rand_matrix_multi_normal
Keywords: finance; Gaussian distribution; multivariate Normal distribution; Normal distribution; random numbers
GAMS: L6b14
Generates a matrix of pseudorandom numbers from a multivariate Normal distribution
Names: g05rzf; nagf_rand_multivar_normal
Keywords: finance; Gaussian distribution; multivariate Normal distribution; Normal distribution; random numbers
GAMS: L6b14
Generates a vector of pseudorandom numbers from a uniform distribution over (0,1]
Names: g05sac; nag_rand_basic
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a uniform distribution over (0,1]
Names: g05saf; nagf_rand_dist_uniform01
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a beta distribution
Names: g05sbc; nag_rand_beta
Keywords: beta distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from a beta distribution
Names: g05sbf; nagf_rand_dist_beta
Keywords: beta distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from a Cauchy distribution
Names: g05scc; nag_rand_cauchy
Keywords: Cauchy distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a Cauchy distribution
Names: g05scf; nagf_rand_dist_cauchy
Keywords: Cauchy distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a χ2 distribution
Names: g05sdc; nag_rand_chi_sq
Keywords: chi-squared distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a χ2 distribution
Names: g05sdf; nagf_rand_dist_chisq
Keywords: chi-squared distribution; finance; random numbers
GAMS: L6a3
Generates a vector of pseudorandom numbers from a Dirichlet distribution
Names: g05sec; nag_rand_dirichlet
Keywords: Dirichlet distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from a Dirichlet distribution
Names: g05sef; nagf_rand_dist_dirichlet
Keywords: Dirichlet distribution; finance; random numbers
GAMS: L6a2
Generates a vector of pseudorandom numbers from an exponential distribution
Names: g05sfc; nag_rand_exp
Keywords: exponential distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an exponential distribution
Names: g05sff; nagf_rand_dist_exp
Keywords: exponential distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an exponential mix distribution
Names: g05sgc; nag_rand_exp_mix
Keywords: exponential distribution; exponential mix distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an exponential mix distribution
Names: g05sgf; nagf_rand_dist_expmix
Keywords: exponential distribution; exponential mix distribution; finance; random numbers
GAMS: L6a5
Generates a vector of pseudorandom numbers from an F-distribution
Names: g05shc; nag_rand_f
Keywords: F-distribution; finance; random numbers
GAMS: L6a6
Generates a vector of pseudorandom numbers from an F-distribution
Names: g05shf; nagf_rand_dist_f
Keywords: F-distribution; finance; random numbers
GAMS: L6a6
Generates a vector of pseudorandom numbers from a gamma distribution
Names: g05sjc; nag_rand_gamma
Keywords: finance; gamma distribution; random numbers
GAMS: L6a7
Generates a vector of pseudorandom numbers from a gamma distribution
Names: g05sjf; nagf_rand_dist_gamma
Keywords: finance; gamma distribution; random numbers
GAMS: L6a7
Generates a vector of pseudorandom numbers from a Normal distribution
Names: g05skc; nag_rand_normal
Keywords: finance; Gaussian distribution; Normal distribution; random numbers
GAMS: L6a14
Generates a vector of pseudorandom numbers from a Normal distribution
Names: g05skf; nagf_rand_dist_normal
Keywords: finance; Gaussian distribution; Normal distribution; random numbers
GAMS: L6a14
Generates a vector of pseudorandom numbers from a logistic distribution
Names: g05slc; nag_rand_logistic
Keywords: finance; logistic distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a logistic distribution
Names: g05slf; nagf_rand_dist_logistic
Keywords: finance; logistic distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a log-normal distribution
Names: g05smc; nag_rand_lognormal
Keywords: finance; log-normal distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a log-normal distribution
Names: g05smf; nagf_rand_dist_lognormal
Keywords: finance; log-normal distribution; random numbers
GAMS: L6a12
Generates a vector of pseudorandom numbers from a Student's t-distribution
Names: g05snc; nag_rand_students_t
Keywords: finance; random numbers; Student's t-distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a Student's t-distribution
Names: g05snf; nagf_rand_dist_students_t
Keywords: finance; random numbers; Student's t-distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a triangular distribution
Names: g05spc; nag_rand_triangular
Keywords: finance; random numbers; triangular distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a triangular distribution
Names: g05spf; nagf_rand_dist_triangular
Keywords: finance; random numbers; triangular distribution
GAMS: L6a20
Generates a vector of pseudorandom numbers from a uniform distribution over [a,b]
Names: g05sqc; nag_rand_uniform
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a uniform distribution over [a,b]
Names: g05sqf; nagf_rand_dist_uniform
Keywords: finance; random numbers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom numbers from a von Mises distribution
Names: g05src; nag_rand_von_mises
Keywords: finance; random numbers; von Mises distribution
GAMS: L6a22
Generates a vector of pseudorandom numbers from a von Mises distribution
Names: g05srf; nagf_rand_dist_vonmises
Keywords: finance; random numbers; von Mises distribution
GAMS: L6a22
Generates a vector of pseudorandom numbers from a Weibull distribution
Names: g05ssc; nag_rand_weibull
Keywords: finance; random numbers; Weibull distribution
GAMS: L6a23
Generates a vector of pseudorandom numbers from a Weibull distribution
Names: g05ssf; nagf_rand_dist_weibull
Keywords: finance; random numbers; Weibull distribution
GAMS: L6a23
Generates a vector of pseudorandom integers from a binomial distribution
Names: g05tac; nag_rand_binomial
Keywords: binomial distribution; finance; random integers
GAMS: L6a2
Generates a vector of pseudorandom integers from a binomial distribution
Names: g05taf; nagf_rand_int_binomial
Keywords: binomial distribution; finance; random integers
GAMS: L6a2
Generates a vector of pseudorandom logical values
Names: g05tbc; nag_rand_logical
Keywords: finance; probability; random logicals
GAMS: L6a2
Generates a vector of pseudorandom logical values
Names: g05tbf; nagf_rand_logical
Keywords: finance; probability; random logicals
GAMS: L6a2
Generates a vector of pseudorandom integers from a geometric distribution
Names: g05tcc; nag_rand_geom
Keywords: finance; geometric distribution; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a geometric distribution
Names: g05tcf; nagf_rand_int_geom
Keywords: finance; geometric distribution; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a general discrete distribution
Names: g05tdc; nag_rand_gen_discrete
Keywords: CDF, cumulative distribution function; distribution function; finance; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a general discrete distribution
Names: g05tdf; nagf_rand_int_general
Keywords: CDF, cumulative distribution function; distribution function; finance; random integers
GAMS: L6a7
Generates a vector of pseudorandom integers from a hypergeometric distribution
Names: g05tec; nag_rand_hypergeometric
Keywords: finance; hypergeometric distribution; random integers
GAMS: L6a8
Generates a vector of pseudorandom integers from a hypergeometric distribution
Names: g05tef; nagf_rand_int_hypergeom
Keywords: finance; hypergeometric distribution; random integers
GAMS: L6a8
Generates a vector of pseudorandom integers from a logarithmic distribution
Names: g05tfc; nag_rand_logarithmic
Keywords: finance; logarithmic distribution; random integers
GAMS: L6a
Generates a vector of pseudorandom integers from a logarithmic distribution
Names: g05tff; nagf_rand_int_log
Keywords: finance; logarithmic distribution; random integers
GAMS: L6a
Generates a vector of pseudorandom integers from a multinomial distribution
Names: g05tgc; nag_rand_gen_multinomial
Keywords: finance; multinomial distribution; random integers
GAMS: L6b13
Generates a vector of pseudorandom integers from a multinomial distribution
Names: g05tgf; nagf_rand_int_multinomial
Keywords: finance; multinomial distribution; random integers
GAMS: L6b13
Generates a vector of pseudorandom integers from a negative binomial distribution
Names: g05thc; nag_rand_neg_bin
Keywords: finance; negative binomial distribution; Pascal distribution; Polya distribution; random integers
GAMS: L6a14
Generates a vector of pseudorandom integers from a negative binomial distribution
Names: g05thf; nagf_rand_int_negbin
Keywords: finance; negative binomial distribution; Pascal distribution; Polya distribution; random integers
GAMS: L6a14
Generates a vector of pseudorandom integers from a Poisson distribution
Names: g05tjc; nag_rand_poisson
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a Poisson distribution
Names: g05tjf; nagf_rand_int_poisson
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a Poisson distribution with varying mean
Names: g05tkc; nag_rand_compd_poisson
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a Poisson distribution with varying mean
Names: g05tkf; nagf_rand_int_poisson_varmean
Keywords: finance; Poisson distribution; random integers
GAMS: L6a16
Generates a vector of pseudorandom integers from a uniform distribution
Names: g05tlc; nag_rand_discrete_uniform
Keywords: finance; random integers; rectangular distribution; uniform distribution
GAMS: L6a21
Generates a vector of pseudorandom integers from a uniform distribution
Names: g05tlf; nagf_rand_int_uniform
Keywords: finance; random integers; rectangular distribution; uniform distribution
GAMS: L6a21
Generate paths for a free or non-free Wiener process using the Brownian bridge algorithm
Names: g05xbc; nag_rand_bb
Keywords: brownian bridge; Wiener process
GAMS: M1
Generate paths for a free or non-free Wiener process using the Brownian bridge algorithm
Names: g05xbf; nagf_rand_bb
Keywords: brownian bridge; Wiener process
GAMS: M1
Backs out the increments from sample paths generated by a Brownian bridge algorithm
Names: g05xdc; nag_rand_bb_inc
Keywords: brownian bridge
GAMS: M1
Backs out the increments from sample paths generated by a Brownian bridge algorithm
Names: g05xdf; nagf_rand_bb_inc
Keywords: brownian bridge
GAMS: M1
Creates a Brownian bridge construction order out of a set of input times
Names: g05xec; nag_rand_bb_make_bridge_order
Keywords: brownian bridge
GAMS: L6, M1
Creates a Brownian bridge construction order out of a set of input times
Names: g05xef; nagf_rand_bb_make_bridge_order
Keywords: brownian bridge
GAMS: L6, M1
Generates a Normal quasi-random number sequence
Names: g05yjc; nag_quasi_rand_normal
Keywords: Faure, quasi-random numbers; Gaussian distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; Normal distribution; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Generates a Normal quasi-random number sequence
Names: g05yjf; nagf_rand_quasi_normal
Keywords: Faure, quasi-random numbers; Gaussian distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; Normal distribution; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Generates a log-normal quasi-random number sequence
Names: g05ykc; nag_quasi_rand_lognormal
Keywords: Faure, quasi-random numbers; log-normal distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Generates a log-normal quasi-random number sequence
Names: g05ykf; nagf_rand_quasi_lognormal
Keywords: Faure, quasi-random numbers; log-normal distribution; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; Sobol, quasi-random numbers
GAMS: L6b21
Initializes a quasi-random number generator
Names: g05ylc; nag_quasi_init
Keywords: Faure, quasi-random numbers; finance; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; rectangular distribution; Sobol, quasi-random numbers; uniform distribution
GAMS: L6c
Initializes a quasi-random number generator
Names: g05ylf; nagf_rand_quasi_init
Keywords: Faure, quasi-random numbers; finance; low-discrepancy sequences; Niederreiter method, quasi-random numbers; quasi-random numbers; random numbers; rectangular distribution; Sobol, quasi-random numbers; uniform distribution
GAMS: L6c
Generates a uniform quasi-random number sequence
Names: g05ymc; nag_quasi_rand_uniform
Keywords: finance; low-discrepancy sequences; options, computational; quasi-random numbers; random numbers
GAMS: L6b21
Generates a uniform quasi-random number sequence
Names: g05ymf; nagf_rand_quasi_uniform
Keywords: finance; low-discrepancy sequences; options, computational; quasi-random numbers; random numbers
GAMS: L6b21
Initializes a scrambled quasi-random number generator
Names: g05ync; nag_quasi_init_scrambled
Keywords: Faure–Tezuka; finance; Niederreiter; Owen; random numbers; scramble; Sobol
GAMS: L6c
Initializes a scrambled quasi-random number generator
Names: g05ynf; nagf_rand_quasi_init_scrambled
Keywords: Faure–Tezuka; finance; Niederreiter; Owen; random numbers; scramble; Sobol
GAMS: L6c
Generates a uniform quasi-random number sequence, for a subset of dimensions
Names: g05ypc; nag_rand_quasi_uniform_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a uniform quasi-random number sequence, for a subset of dimensions
Names: g05ypf; nagf_rand_quasi_uniform_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a Normal quasi-random number sequence, for a subset of dimensions
Names: g05yqc; nag_rand_quasi_normal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a Normal quasi-random number sequence, for a subset of dimensions
Names: g05yqf; nagf_rand_quasi_normal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a log-normal quasi-random number sequence, for a subset of dimensions
Names: g05yrc; nag_rand_quasi_lognormal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Generates a log-normal quasi-random number sequence, for a subset of dimensions
Names: g05yrf; nagf_rand_quasi_lognormal_bydim
Keywords: low-discrepancy sequences
GAMS: L6b21
Setup for simulating one-dimensional random fields, user-defined variogram
Names: g05zmc; nag_rand_field_1d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: M1a, L6
Setup for simulating one-dimensional random fields, user-defined variogram
Names: g05zmf; nagf_rand_field_1d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: M1a, L6
Setup for simulating one-dimensional random fields
Names: g05znc; nag_rand_field_1d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Setup for simulating one-dimensional random fields
Names: g05znf; nagf_rand_field_1d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Generates realizations of a one-dimensional random field
Names: g05zpc; nag_rand_field_1d_generate
Keywords: random fields
GAMS: L6c
Generates realizations of a one-dimensional random field
Names: g05zpf; nagf_rand_field_1d_generate
Keywords: random fields
GAMS: L6c
Setup for simulating two-dimensional random fields, user-defined variogram
Names: g05zqc; nag_rand_field_2d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: L6a
Setup for simulating two-dimensional random fields, user-defined variogram
Names: g05zqf; nagf_rand_field_2d_user_setup
Keywords: options, computational; random fields; variogram
GAMS: L6a
Setup for simulating two-dimensional random fields, preset variogram
Names: g05zrc; nag_rand_field_2d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Setup for simulating two-dimensional random fields, preset variogram
Names: g05zrf; nagf_rand_field_2d_predef_setup
Keywords: options, computational; random fields; variogram
GAMS: L6c
Generates realizations of a two-dimensional random field
Names: g05zsc; nag_rand_field_2d_generate
Keywords: random fields
GAMS: L6c
Generates realizations of a two-dimensional random field
Names: g05zsf; nagf_rand_field_2d_generate
Keywords: random fields
GAMS: L6c
Generates realizations of fractional Brownian motion
Names: g05ztc; nag_rand_field_fracbm_generate
Keywords: Brownian motion; fractional Brownian motion
GAMS: L6a
Generates realizations of fractional Brownian motion
Names: g05ztf; nagf_rand_field_fracbm_generate
Keywords: Brownian motion; fractional Brownian motion
GAMS: L6a
Computes maximum likelihood estimates for parameters of the Weibull distribution
Names: g07bec; nag_estim_weibull
Keywords: maximum likelihood; Weibull distribution
GAMS: L4a1a4w, L4a3
Computes maximum likelihood estimates for parameters of the Weibull distribution
Names: g07bef; nagf_univar_estim_weibull
Keywords: maximum likelihood; Weibull distribution
GAMS: L4a1a4w, L4a3
Estimates parameter values of the generalized Pareto distribution
Names: g07bfc; nag_estim_gen_pareto
Keywords: maximum likelihood; moments; Pareto distribution
GAMS: L4a1a4e
Estimates parameter values of the generalized Pareto distribution
Names: g07bff; nagf_univar_estim_genpareto
Keywords: maximum likelihood; moments; Pareto distribution
GAMS: L4a1a4e
Robust estimation, median, median absolute deviation, robust standard deviation
Names: g07daf; nagf_univar_robust_1var_median
Keywords: mean; median; robust estimation; standard deviation
GAMS: L1a1
Robust estimation, M-estimates for location and scale parameters, standard weight functions
Names: g07dbf; nagf_univar_robust_1var_mestim
Keywords: location, robust estimation; M-estimates; robust estimation; scale parameters
GAMS: L1a1
Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
Names: g07dcc; nag_robust_m_estim_1var_usr
Keywords: location, robust estimation; M-estimates; robust estimation; scale parameters
GAMS: L1a1
Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
Names: g07dcf; nagf_univar_robust_1var_mestim_wgt
Keywords: location, robust estimation; M-estimates; robust estimation; scale parameters
GAMS: L1a1
Computes a trimmed and winsorized mean of a single sample with estimates of their variance
Names: g07ddf; nagf_univar_robust_1var_trimmed
Keywords: trimmed mean; variance; winsorized mean
GAMS: L1a1
Robust confidence intervals, one-sample
Names: g07eac; nag_rank_ci_1var
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Robust confidence intervals, one-sample
Names: g07eaf; nagf_univar_robust_1var_ci
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Robust confidence intervals, two-sample
Names: g07ebc; nag_rank_ci_2var
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Robust confidence intervals, two-sample
Names: g07ebf; nagf_univar_robust_2var_ci
Keywords: confidence interval; robust estimation
GAMS: L4a1b1
Performs the Wilcoxon one-sample (matched pairs) signed rank test
Names: g08agf; nagf_nonpar_test_wilcoxon
Keywords: signed rank test; Wilcoxon signed rank test
GAMS: L4a1b1
Computes the exact probabilities for the Mann–Whitney U statistic, ties in pooled sample
Names: g08akf; nagf_nonpar_prob_mwu_ties
Keywords: Mann–Whitney U statistic; Neumann algorithm; pooled sample; tail probabilities
GAMS: L4a1b1
Performs the one-sample Kolmogorov–Smirnov test for standard distributions
Names: g08cbc; nag_1_sample_ks_test
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Performs the one-sample Kolmogorov–Smirnov test for standard distributions
Names: g08cbf; nagf_nonpar_test_ks_1sample
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Performs the one-sample Kolmogorov–Smirnov test for a user-supplied distribution
Names: g08ccf; nagf_nonpar_test_ks_1sample_user
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Performs the two-sample Kolmogorov–Smirnov test
Names: g08cdf; nagf_nonpar_test_ks_2sample
Keywords: Kolmogorov–Smirnov test
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic
Names: g08chc; nag_anderson_darling_stat
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic
Names: g08chf; nagf_nonpar_gofstat_anddar
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of uniformly distributed data
Names: g08cjc; nag_anderson_darling_uniform_prob
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of uniformly distributed data
Names: g08cjf; nagf_nonpar_gofstat_anddar_unif
Keywords: Anderson–Darling test statistic
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of a fully-unspecified Normal distribution
Names: g08ckc; nag_anderson_darling_normal_prob
Keywords: Anderson–Darling test statistic; Gaussian distribution; Normal distribution; probability
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of a fully-unspecified Normal distribution
Names: g08ckf; nagf_nonpar_gofstat_anddar_normal
Keywords: Anderson–Darling test statistic; Gaussian distribution; Normal distribution; probability
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of an unspecified exponential distribution
Names: g08clc; nag_anderson_darling_exp_prob
Keywords: Anderson–Darling test statistic; exponential distribution; probability
GAMS: L4a1c
Calculates the Anderson–Darling goodness-of-fit test statistic and its probability for the case of an unspecified exponential distribution
Names: g08clf; nagf_nonpar_gofstat_anddar_exp
Keywords: Anderson–Darling test statistic; exponential distribution; probability
GAMS: L4a1c
Performs the runs up or runs down test for randomness
Names: g08eac; nag_runs_test
Keywords: randomness, tests for; runs up and runs down test for randomness
GAMS: L4a1d
Performs the runs up or runs down test for randomness
Names: g08eaf; nagf_nonpar_randtest_runs
Keywords: randomness, tests for; runs up and runs down test for randomness
GAMS: L4a1d
Regression using ranks, uncensored data
Names: g08rac; nag_rank_regsn
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Regression using ranks, uncensored data
Names: g08raf; nagf_nonpar_rank_regsn
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Regression using ranks, right-censored data
Names: g08rbc; nag_rank_regsn_censored
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Regression using ranks, right-censored data
Names: g08rbf; nagf_nonpar_rank_regsn_censored
Keywords: parameter estimates; regression; scores; variance-covariance matrix
GAMS: L8c6
Kernel density estimate using Gaussian kernel (thread safe)
Names: g10bbc; nag_kernel_density_gauss
Keywords: kernel density
GAMS: L4a1b2
Kernel density estimate using Gaussian kernel (thread safe)
Names: g10bbf; nagf_smooth_kerndens_gauss
Keywords: kernel density
GAMS: L4a1b2
Compute smoothed data sequence using running median smoothers
Names: g10caf; nagf_smooth_data_runningmedian
Keywords: running median; smoothing; Tukey's smoothing
GAMS: L8h
Computes multiway table from set of classification factors using given percentile/quantile
Names: g11bbf; nagf_contab_tabulate_percentile
Keywords: classification variable; factor variable; table
GAMS: L1c1, L2b, L9
Computes marginal tables for multiway table computed by g11bac or g11bbc
Names: g11bcc; nag_tabulate_margin
Keywords: marginal tables
GAMS: L2b, L9
Computes marginal tables for multiway table computed by g11baf or g11bbf
Names: g11bcf; nagf_contab_tabulate_margin
Keywords: marginal tables
GAMS: L2b, L9
Returns parameter estimates for the conditional analysis of stratified data
Names: g11cac; nag_condl_logistic
Keywords: conditional logistic analysis; logistic analysis; parameter estimates; stratified data
GAMS: L9, L15
Returns parameter estimates for the conditional analysis of stratified data
Names: g11caf; nagf_contab_condl_logistic
Keywords: conditional logistic analysis; logistic analysis; parameter estimates; stratified data
GAMS: L9, L15
Contingency table, latent variable model for binary data
Names: g11sac; nag_binary_factor
Keywords: factor scores; latent variable model; score patterns; theta scores
GAMS: L13a
Contingency table, latent variable model for binary data
Names: g11saf; nagf_contab_binary
Keywords: factor scores; latent variable model; score patterns; theta scores
GAMS: L13a
Computes rank statistics for comparing survival curves
Names: g12abc; nag_surviv_logrank
Keywords: log rank test; rank statistics
GAMS: L15
Computes rank statistics for comparing survival curves
Names: g12abf; nagf_surviv_logrank
Keywords: log rank test; rank statistics
GAMS: L15
Fits Cox's proportional hazard model
Names: g12baf; nagf_surviv_coxmodel
Keywords: Cox proportional hazard model
GAMS: L15
Univariate time series, sample autocorrelation function
Names: g13abf; nagf_tsa_uni_autocorr
Keywords: autocorrelation coefficients; finance; mean; test statistic; time series; univariate time series; variance
GAMS: L10a2a1
Univariate time series, preliminary estimation, seasonal ARIMA model
Names: g13adf; nagf_tsa_uni_arima_prelim
Keywords: ARIMA; finance; time series; univariate time series
GAMS: L10a2d1
Univariate time series, estimation, seasonal ARIMA model (comprehensive)
Names: g13aef; nagf_tsa_uni_arima_estim
Keywords: ARIMA; time series; univariate time series
GAMS: L10a2d2
Univariate time series, estimation, seasonal ARIMA model (easy-to-use)
Names: g13aff; nagf_tsa_uni_arima_estim_easy
Keywords: ARIMA; finance; time series; univariate time series
GAMS: L10a2d2
Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model
Names: g13ajf; nagf_tsa_uni_arima_forcecast
Keywords: finance; forecasting; standard deviation; time series; univariate time series
GAMS: L10a2d3
Univariate time series, diagnostic checking of residuals, following g13aef or g13aff
Names: g13asf; nagf_tsa_uni_arima_resid
Keywords: ARMA; autocorrelation function; Box–Jenkins models; Box–Ljung portmanteau statistic; finance; significance; standard errors; time series; univariate time series
GAMS: L10a2d2
Computes (augmented) Dickey–Fuller unit root test statistic
Names: g13awc; nag_tsa_dickey_fuller_unit
Keywords: Dickey–Fuller; unit root
GAMS: L10a2b
Computes (augmented) Dickey–Fuller unit root test statistic
Names: g13awf; nagf_tsa_uni_dickey_fuller_unit
Keywords: Dickey–Fuller; unit root
GAMS: L10a2b
Multivariate time series, filtering (pre-whitening) by an ARIMA model
Names: g13bac; nag_tsa_arma_filter
Keywords: ARIMA; filtering; finance; multivariate time series; pre-whitening, filtering; time series
GAMS: L10b2b
Multivariate time series, filtering (pre-whitening) by an ARIMA model
Names: g13baf; nagf_tsa_multi_filter_arima
Keywords: ARIMA; filtering; finance; multivariate time series; pre-whitening, filtering; time series
GAMS: L10b2b
Multivariate time series, filtering by a transfer function model
Names: g13bbc; nag_tsa_transf_filter
Keywords: filtering; finance; multivariate time series; time series
GAMS: L10a1c4
Multivariate time series, filtering by a transfer function model
Names: g13bbf; nagf_tsa_multi_filter_transf
Keywords: filtering; finance; multivariate time series; time series
GAMS: L10a1c4
Multivariate time series, cross-correlations
Names: g13bcc; nag_tsa_cross_corr
Keywords: cross-correlation; finance; multivariate time series; time series
GAMS: L10b2a
Multivariate time series, cross-correlations
Names: g13bcf; nagf_tsa_multi_xcorr
Keywords: cross-correlation; finance; multivariate time series; time series
GAMS: L10b2a
Multivariate time series, preliminary estimation of transfer function model
Names: g13bdc; nag_tsa_transf_prelim_fit
Keywords: finance; multivariate time series; time series
GAMS: L10b2b
Multivariate time series, preliminary estimation of transfer function model
Names: g13bdf; nagf_tsa_multi_transf_prelim
Keywords: finance; multivariate time series; time series
GAMS: L10b2b
Multivariate time series, estimation of multi-input model
Names: g13bef; nagf_tsa_multi_inputmod_estim
Keywords: ARIMA; exact likelihood; finance; marginal likelihood; multivariate time series; nonlinear least squares; time series; univariate time series
GAMS: L10a2d2, L10b2b
Multivariate time series, state set and forecasts from fully specified multi-input model
Names: g13bjf; nagf_tsa_multi_inputmod_forecast
Keywords: finance; forecasting; multivariate time series; time series
GAMS: L10b2b
Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13cac; nag_tsa_spectrum_univar_cov
Keywords: Bartlett lag window; finance; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window; univariate time series
GAMS: L10a3a4
Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13caf; nagf_tsa_uni_spectrum_lag
Keywords: Bartlett lag window; finance; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window; univariate time series
GAMS: L10a3a4
Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window
Names: g13cbf; nagf_tsa_uni_spectrum_daniell
Keywords: Daniell window; finance; smoothing; spectral smoothing; time series; trapezium frequency window; univariate time series
GAMS: L10a3a3
Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13ccc; nag_tsa_spectrum_bivar_cov
Keywords: Bartlett lag window; cross-spectrum; finance; multivariate time series; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window
GAMS: L10b3a4
Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
Names: g13ccf; nagf_tsa_multi_spectrum_lag
Keywords: Bartlett lag window; cross-spectrum; finance; multivariate time series; Parzen lag window; rectangular lag window; smoothing; time series; Tukey lag window
GAMS: L10b3a4
Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window
Names: g13cdf; nagf_tsa_multi_spectrum_daniell
Keywords: cross-spectrum; Daniell window; finance; multivariate time series; smoothing; spectral smoothing; time series; trapezium frequency window
GAMS: L10b3a3
Multivariate time series, noise spectrum, bounds, impulse response function and its standard error
Names: g13cgf; nagf_tsa_multi_noise_bivar
Keywords: finance; impulse response function; multivariate time series; noise spectrum; standard errors; time series
GAMS: L10b3a6
Multivariate time series, multiple squared partial autocorrelations
Names: g13dbc; nag_tsa_multi_auto_corr_part
Keywords: multivariate time series; partial autocorrelation coefficients; time series
GAMS: L10c
Multivariate time series, multiple squared partial autocorrelations
Names: g13dbf; nagf_tsa_multi_autocorr_part
Keywords: multivariate time series; partial autocorrelation coefficients; time series
GAMS: L10c
Multivariate time series, estimation of VARMA model
Names: g13ddc; nag_tsa_varma_estimate
Keywords: correlation matrix; finance; maximum likelihood; multivariate time series; standard errors; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, estimation of VARMA model
Names: g13ddf; nagf_tsa_multi_varma_estimate
Keywords: correlation matrix; finance; maximum likelihood; multivariate time series; standard errors; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, forecasts and their standard errors
Names: g13djc; nag_tsa_varma_forecast
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, forecasts and their standard errors
Names: g13djf; nagf_tsa_multi_varma_forecast
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, updates forecasts and their standard errors
Names: g13dkc; nag_tsa_varma_update
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, updates forecasts and their standard errors
Names: g13dkf; nagf_tsa_multi_varma_update
Keywords: finance; forecasting; multivariate time series; standard errors; time series
GAMS: L10c
Multivariate time series, differences and/or transforms
Names: g13dlc; nag_tsa_multi_diff
Keywords: finance; multivariate time series; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, differences and/or transforms
Names: g13dlf; nagf_tsa_multi_diff
Keywords: finance; multivariate time series; time series; VARMA, vector autoregressive moving average model
GAMS: L10c
Multivariate time series, sample cross-correlation or cross-covariance matrices
Names: g13dmc; nag_tsa_multi_cross_corr
Keywords: cross-correlation; cross-covariance; multivariate time series; time series
GAMS: L10c
Multivariate time series, sample cross-correlation or cross-covariance matrices
Names: g13dmf; nagf_tsa_multi_corrmat_cross
Keywords: cross-correlation; cross-covariance; multivariate time series; time series
GAMS: L10c
Multivariate time series, sample partial lag correlation matrices, χ2 statistics and significance levels
Names: g13dnc; nag_tsa_multi_part_lag_corr
Keywords: chi squared statistics; multivariate time series; partial lag; significance; time series
GAMS: L10c
Multivariate time series, sample partial lag correlation matrices, χ2 statistics and significance levels
Names: g13dnf; nagf_tsa_multi_corrmat_partlag
Keywords: chi squared statistics; multivariate time series; partial lag; significance; time series
GAMS: L10c
Multivariate time series, partial autoregression matrices
Names: g13dpc; nag_tsa_multi_part_regsn
Keywords: multivariate time series; partial autoregression matrices; time series
GAMS: L10c
Multivariate time series, partial autoregression matrices
Names: g13dpf; nagf_tsa_multi_regmat_partial
Keywords: multivariate time series; partial autoregression matrices; time series
GAMS: L10c
Multivariate time series, diagnostic checking of residuals, following g13ddc
Names: g13dsc; nag_tsa_varma_diagnostic
Keywords: multivariate time series; time series
GAMS: L10c
Multivariate time series, diagnostic checking of residuals, following g13ddf
Names: g13dsf; nagf_tsa_multi_varma_diag
Keywords: multivariate time series; time series
GAMS: L10c
Calculates the zeros of a vector autoregressive (or moving average) operator
Names: g13dxc; nag_tsa_arma_roots
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L10a2f, L10c
Calculates the zeros of a vector autoregressive (or moving average) operator
Names: g13dxf; nagf_tsa_uni_arma_roots
Keywords: finance; time series; VARMA, vector autoregressive moving average model
GAMS: L10a2f, L10c
One iteration step of the time-varying Kalman filter recursion using the square root covariance implementation
Names: g13eac; nag_kalman_sqrt_filt_cov_var
Keywords: Kalman filter
GAMS: L10a2e
Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter
Names: g13eaf; nagf_tsa_multi_kalman_sqrt_var
Keywords: Kalman filter
GAMS: L10a2e
One iteration step of the time-invariant Kalman filter recursion using the square root covariance implementation with (A,C) in lower observer Hessenberg form
Names: g13ebc; nag_kalman_sqrt_filt_cov_invar
Keywords: Kalman filter
GAMS: L10a2e
Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter
Names: g13ebf; nagf_tsa_multi_kalman_sqrt_invar
Keywords: Kalman filter
GAMS: L10a2e
One iteration step of the time-varying Kalman filter recursion using the square root information implementation
Names: g13ecc; nag_kalman_sqrt_filt_info_var
Keywords: time; time series
GAMS: L10a2e
One iteration step of the time-invariant Kalman filter recursion using the square root information implementation with (A-1,A-1B) in upper controller Hessenberg form
Names: g13edc; nag_kalman_sqrt_filt_info_invar
Keywords: time; time series
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise (reverse communication)
Names: g13ejc; nag_kalman_unscented_state_revcom
Keywords: filter; time series; transform; UKF; unscented; UT
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise (reverse communication)
Names: g13ejf; nagf_tsa_kalman_unscented_state_revcom
Keywords: filter; time series; transform; UKF; unscented; UT
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise
Names: g13ekc; nag_kalman_unscented_state
Keywords: filter; time series; UKF; unscented
GAMS: L10a2e
Combined time and measurement update, one iteration of the Unscented Kalman Filter for a nonlinear state space model, with additive noise
Names: g13ekf; nagf_tsa_kalman_unscented_state
Keywords: filter; time series; UKF; unscented
GAMS: L10a2e
Unitary state-space transformation to reduce (A,C) to lower or upper observer Hessenberg form
Names: g13ewc; nag_trans_hessenberg_observer
Keywords: time series
GAMS: L10a2e
Unitary state-space transformation to reduce (B,A) to lower or upper controller Hessenberg form
Names: g13exc; nag_trans_hessenberg_controller
Keywords: time series
GAMS: L10a2e
Univariate time series, parameter estimation for either a symmetric GARCH process or a GARCH process with asymmetry of the form (εt-1+γ)2
Names: g13faf; nagf_tsa_uni_garch_asym1_estim
Keywords: finance; GARCH; time series; univariate time series
GAMS: L10a2
Univariate time series, parameter estimation for a GARCH process with asymmetry of the form ( |εt-1| +γεt-1)2
Names: g13fcf; nagf_tsa_uni_garch_asym2_estim
Keywords: finance; GARCH; time series; univariate time series
GAMS: L10a2
Univariate time series, parameter estimation for an asymmetric Glosten, Jagannathan and Runkle (GJR) GARCH process
Names: g13fef; nagf_tsa_uni_garch_gjr_estim
Keywords: finance; GARCH; GJR GARCH process; Glosten, Jagannathan and Runkle process; time series; univariate time series
GAMS: L10a2
Univariate time series, parameter estimation for an exponential GARCH (EGARCH) process
Names: g13fgf; nagf_tsa_uni_garch_exp_estim
Keywords: EGARCH; exponential GARCH; finance; GARCH; time series; univariate time series
GAMS: L10a2
Computes the iterated exponential moving average for a univariate inhomogeneous time series
Names: g13mec; nag_tsa_inhom_iema
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the iterated exponential moving average for a univariate inhomogeneous time series
Names: g13mef; nagf_tsa_inhom_iema
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the iterated exponential moving average for a univariate inhomogeneous time series, intermediate results are also returned
Names: g13mfc; nag_tsa_inhom_iema_all
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the iterated exponential moving average for a univariate inhomogeneous time series, intermediate results are also returned
Names: g13mff; nagf_tsa_inhom_iema_all
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the exponential moving average for a univariate inhomogeneous time series
Names: g13mgc; nag_tsa_inhom_ma
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Computes the exponential moving average for a univariate inhomogeneous time series
Names: g13mgf; nagf_tsa_inhom_ma
Keywords: data stream; exponential moving average; moving average; streaming; time series; univariate time series
GAMS: L10a1c4
Change point detection, using binary segmentation
Names: g13ndc; nag_tsa_cp_binary
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Change point detection, using binary segmentation
Names: g13ndf; nagf_tsa_cp_binary
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Change point detection, using binary segmentation, user supplied cost function
Names: g13nec; nag_tsa_cp_binary_user
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Change point detection, using binary segmentation, user supplied cost function
Names: g13nef; nagf_tsa_cp_binary_user
Keywords: binary segmentation; change point; time series
GAMS: L10a2a
Construct a design matrix from a linear model specified using g22yac
Names: g22ycc; nag_blgm_lm_design_matrix
Keywords: design matrix; regression
GAMS: L
Construct a design matrix from a linear model specified using g22yaf
Names: g22ycf; nagf_blgm_lm_design_matrix
Keywords: design matrix; regression
GAMS: L
Construct a vector indicating which columns of a design matrix to include in a submodel specified using g22yac
Names: g22ydc; nag_blgm_lm_submodel
Keywords: design matrix; regression
GAMS: L
Construct a vector indicating which columns of a design matrix to include in a submodel specified using g22yaf
Names: g22ydf; nagf_blgm_lm_submodel
Keywords: design matrix; regression
GAMS: L
Integer LP problem (dense)
Names: h02bbf; nagf_mip_ilp_dense
Keywords: branch and bound; finance; integer programming; mixed integer programming
GAMS: G2c1, G2c6, G2c7, G2c6, G2c7, G2c1
Interpret MPSX data file defining IP or LP problem, optimize and print solution
Names: h02bff; nagf_mip_ilp_mpsx
Keywords: branch and bound; integer programming; mixed integer programming; MPSX format
GAMS: G2a1, G2c7
Mixed integer linear programming (MILP), large-scale, branch and bound method
Names: h02bkc; nag_mip_handle_solve_milp
Keywords: HIGHS; mixed integer linear programming
GAMS: G2c1, G2c6, G2c7, G2c6, G2c7, G2c1
Mixed integer linear programming (MILP), large-scale, branch and bound method
Names: h02bkf; nagf_mip_handle_solve_milp
Keywords: HIGHS; mixed integer linear programming
GAMS: G2c1, G2c6, G2c7, G2c6, G2c7, G2c1
Print IP or LP solutions with user-specified names for rows and columns
Names: h02bvf; nagf_mip_ilp_print
Keywords: integer programming; linear programming
GAMS: G4f
Integer QP problem (dense)
Names: h02cbf; nagf_mip_iqp_dense
Keywords: branch and bound; finance; integer programming; integer quadratic program; mixed integer programming; QP, quadratic programming
GAMS: G2a1, G2e1, G2e2, G4d
Integer LP or QP problem (sparse), using e04nkf
Names: h02cef; nagf_mip_iqp_sparse
Keywords: branch and bound; finance; integer programming; integer quadratic program; mixed integer programming; QP, quadratic programming
GAMS: G2a2, G2e1, G2e2, G4d
Mixed integer nonlinear programming
Names: h02dac; nag_mip_sqp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Mixed integer nonlinear programming
Names: h02daf; nagf_mip_sqp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Mixed integer nonlinear programming (MINLP)
Names: h02ddc; nag_mip_handle_solve_minlp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Mixed integer nonlinear programming (MINLP)
Names: h02ddf; nagf_mip_handle_solve_minlp
Keywords: integer programming; integer quadratic program; mixed integer programming; nonlinear programming; SQP, sequential quadratic programming
GAMS: G2a1, G2c7, G2h1a2
Option setting routine for h02dac
Names: h02zkc; nag_mip_opt_set
Keywords: options, computational
GAMS: G4f
Option setting routine for h02daf
Names: h02zkf; nagf_mip_optset
Keywords: options, computational
GAMS: G4f
Travelling Salesman Problem, simulated annealing
Names: h03bbc; nag_mip_tsp_simann
Keywords: shortest path; simulated annealing; Travelling Salesman Problem; TSP
GAMS: G2d1
Travelling Salesman Problem, simulated annealing
Names: h03bbf; nagf_mip_tsp_simann
Keywords: shortest path; simulated annealing; Travelling Salesman Problem; TSP
GAMS: G2d1
Best n subsets of size p (reverse communication)
Names: h05aac; nag_best_subset_given_size_revcomm
Keywords: best subset; subsetting, best
GAMS: Z
Best n subsets of size p (reverse communication)
Names: h05aaf; nagf_mip_best_subset_given_size_revcomm
Keywords: best subset; subsetting, best
GAMS: Z
Best n subsets of size p (direct communication)
Names: h05abc; nag_best_subset_given_size
Keywords: best subset; subsetting, best
GAMS: Z
Best n subsets of size p (direct communication)
Names: h05abf; nagf_mip_best_subset_given_size
Keywords: best subset; subsetting, best
GAMS: Z
Sort a vector, real numbers
Names: m01caf; nagf_sort_realvec_sort
Keywords: quicksort, double; sort
GAMS: N6a2b
Sort a vector, integer numbers
Names: m01cbf; nagf_sort_intvec_sort
Keywords: sort
GAMS: N6a2a
Sort a vector, character data
Names: m01ccf; nagf_sort_charvec_sort
Keywords: sort
GAMS: N6a2c
Searches an ordered set of real numbers using an O(1) method
Names: m01ndc; nag_sort_realvec_vec_search
Keywords: O(1) method
GAMS: N6a2b
Searches an ordered set of real numbers using an O(1) method
Names: m01ndf; nagf_sort_realvec_vec_search
Keywords: O(1) method
GAMS: N6a2b
Real confluent hypergeometric function 1F1(a;b;x)
Names: s22bac; nag_specfun_1f1_real
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Real confluent hypergeometric function 1F1(a;b;x)
Names: s22baf; nagf_specfun_1f1_real
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Real confluent hypergeometric function 1F1(a;b;x) in scaled form
Names: s22bbc; nag_specfun_1f1_real_scaled
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Real confluent hypergeometric function 1F1(a;b;x) in scaled form
Names: s22bbf; nagf_specfun_1f1_real_scaled
Keywords: 1F1, hypergeometric function; confluent hypergeometric function; hypergeometric function
GAMS: C11
Calculates values of real periodic angular Mathieu functions
Names: s22cac; nag_specfun_mathieu_ang_periodic_real
Keywords: Mathieu
GAMS: C17
Calculates values of real periodic angular Mathieu functions
Names: s22caf; nagf_specfun_mathieu_ang_periodic_real
Keywords: Mathieu
GAMS: C17
Black–Scholes–Merton option pricing formula
Names: s30aac; nag_bsm_price
Keywords: Black–Scholes option pricing; derivative, options; finance; option pricing
GAMS: C19
Black–Scholes–Merton option pricing formula
Names: s30aaf; nagf_specfun_opt_bsm_price
Keywords: Black–Scholes option pricing; derivative, options; finance; option pricing
GAMS: C19
Black–Scholes–Merton option pricing formula with Greeks
Names: s30abc; nag_bsm_greeks
Keywords: Black–Scholes option pricing; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Black–Scholes–Merton option pricing formula with Greeks
Names: s30abf; nagf_specfun_opt_bsm_greeks
Keywords: Black–Scholes option pricing; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Black–Scholes–Merton implied volatility
Names: s30acc; nag_specfun_opt_imp_vol
Keywords: Black–Scholes option pricing; finance; implied volatilities; implied volatility; option pricing
GAMS: C19
Black–Scholes–Merton implied volatility
Names: s30acf; nagf_specfun_opt_imp_vol
Keywords: Black–Scholes option pricing; finance; implied volatilities; implied volatility; option pricing
GAMS: C19
Floating-strike lookback option pricing formula in the Black-Scholes-Merton model
Names: s30bac; nag_lookback_fls_price
Keywords: derivative, options; finance; floating-strike lookback option; option pricing
GAMS: C19
Floating-strike lookback option pricing formula in the Black-Scholes-Merton model
Names: s30baf; nagf_specfun_opt_lookback_fls_price
Keywords: derivative, options; finance; floating-strike lookback option; option pricing
GAMS: C19
Floating-strike lookback option pricing formula with Greeks in the Black-Scholes-Merton model
Names: s30bbc; nag_lookback_fls_greeks
Keywords: derivative, options; finance; floating-strike lookback option; Greeks, options; option pricing
GAMS: C19
Floating-strike lookback option pricing formula with Greeks in the Black-Scholes-Merton model
Names: s30bbf; nagf_specfun_opt_lookback_fls_greeks
Keywords: derivative, options; finance; floating-strike lookback option; Greeks, options; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula
Names: s30cac; nag_binary_con_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula
Names: s30caf; nagf_specfun_opt_binary_con_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula with Greeks
Names: s30cbc; nag_binary_con_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Binary option, cash-or-nothing pricing formula with Greeks
Names: s30cbf; nagf_specfun_opt_binary_con_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula
Names: s30ccc; nag_binary_aon_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula
Names: s30ccf; nagf_specfun_opt_binary_aon_price
Keywords: binary option; cash-or-nothing option; derivative, options; finance; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula with Greeks
Names: s30cdc; nag_binary_aon_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Binary option, asset-or-nothing pricing formula with Greeks
Names: s30cdf; nagf_specfun_opt_binary_aon_greeks
Keywords: binary option; cash-or-nothing option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Standard barrier option pricing formula
Names: s30fac; nag_barrier_std_price
Keywords: barrier option; derivative, options; finance; option pricing
GAMS: C19
Standard barrier option pricing formula
Names: s30faf; nagf_specfun_opt_barrier_std_price
Keywords: barrier option; derivative, options; finance; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula
Names: s30jac; nag_jumpdiff_merton_price
Keywords: derivative, options; finance; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula
Names: s30jaf; nagf_specfun_opt_jumpdiff_merton_price
Keywords: derivative, options; finance; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula with Greeks
Names: s30jbc; nag_jumpdiff_merton_greeks
Keywords: derivative, options; finance; Greeks, options; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Jump-diffusion, Merton's model, option pricing formula with Greeks
Names: s30jbf; nagf_specfun_opt_jumpdiff_merton_greeks
Keywords: derivative, options; finance; Greeks, options; jump-diffusion model, option pricing; Merton model, option pricing; option pricing
GAMS: C19
Heston's model option pricing formula
Names: s30nac; nag_heston_price
Keywords: derivative, options; finance; finance; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing formula
Names: s30naf; nagf_specfun_opt_heston_price
Keywords: derivative, options; finance; finance; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing formula with Greeks
Names: s30nbc; nag_heston_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing formula with Greeks
Names: s30nbf; nagf_specfun_opt_heston_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; option pricing
GAMS: C19
Heston's model option pricing with term structure
Names: s30ncc; nag_heston_term
Keywords: European; finance; Heston; stochastic volatility; term structure
GAMS: C19
Heston's model option pricing with term structure
Names: s30ncf; nagf_specfun_opt_heston_term
Keywords: European; finance; Heston; stochastic volatility; term structure
GAMS: C19
Heston's model option pricing formula with Greeks, sensitivities of model parameters and negative rates
Names: s30ndc; nag_heston_more_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; Heston model, sensitivities; negative rate, options; option pricing
GAMS: C19
Heston's model option pricing formula with Greeks, sensitivities of model parameters and negative rates
Names: s30ndf; nagf_specfun_opt_heston_more_greeks
Keywords: derivative, options; finance; Greeks, options; Heston model, options; Heston model, sensitivities; negative rate, options; option pricing
GAMS: C19
American option, Bjerksund and Stensland pricing formula
Names: s30qcc; nag_amer_bs_price
Keywords: American options; Bjerksund and Stensland pricing formula; finance
GAMS: C19
American option, Bjerksund and Stensland pricing formula
Names: s30qcf; nagf_specfun_opt_amer_bs_price
Keywords: American options; Bjerksund and Stensland pricing formula; finance
GAMS: C19
Asian option, geometric continuous average rate pricing formula
Names: s30sac; nag_asian_geom_price
Keywords: Asian option; derivative, options; finance; option pricing
GAMS: C19
Asian option, geometric continuous average rate pricing formula
Names: s30saf; nagf_specfun_opt_asian_geom_price
Keywords: Asian option; derivative, options; finance; option pricing
GAMS: C19
Asian option, geometric continuous average rate pricing formula with Greeks
Names: s30sbc; nag_asian_geom_greeks
Keywords: Asian option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Asian option, geometric continuous average rate pricing formula with Greeks
Names: s30sbf; nagf_specfun_opt_asian_geom_greeks
Keywords: Asian option; derivative, options; finance; Greeks, options; option pricing
GAMS: C19
Returns the string error name corresponding to a C Libary exit error code
Names: x04ndc; nag_code_to_error_name
Keywords: input/output utilities
GAMS: Z