# NAG FL Interfacef06kef (zdrscl)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

f06kef multiplies a complex vector by the reciprocal of a real scalar.

## 2Specification

Fortran Interface
 Subroutine f06kef ( n, x, incx)
 Integer, Intent (In) :: n, incx Real (Kind=nag_wp), Intent (In) :: alpha Complex (Kind=nag_wp), Intent (Inout) :: x(*)
#include <nag.h>
 void f06kef_ (const Integer *n, const double *alpha, Complex x[], const Integer *incx)
The routine may be called by the names f06kef or nagf_blas_zdrscl.

## 3Description

f06kef performs the operation
 $x←1 α x$
where $x$ is an $n$-element complex vector and $\alpha$ is a real nonzero scalar scattered with stride incx.

None.

## 5Arguments

1: $\mathbf{n}$Integer Input
On entry: $n$, the number of elements in $x$.
2: $\mathbf{alpha}$Real (Kind=nag_wp) Input
On entry: the scalar $\alpha$.
Constraint: ${\mathbf{alpha}}\ne 0.0$.
3: $\mathbf{x}\left(*\right)$Complex (Kind=nag_wp) array Input/Output
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×{\mathbf{incx}}\right)$.
On entry: the $n$-element vector $x$. ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of x are not referenced.
On exit: the updated vector $x$, stored in the same array elements used to supply the original vector.
4: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}>0$.

None.

Not applicable.