# NAG CL Interfacef07psc (zhptrs)

Settings help

CL Name Style:

## 1Purpose

f07psc solves a complex Hermitian indefinite system of linear equations with multiple right-hand sides,
 $AX=B ,$
where $A$ has been factorized by f07prc, using packed storage.

## 2Specification

 #include
 void f07psc (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs, const Complex ap[], const Integer ipiv[], Complex b[], Integer pdb, NagError *fail)
The function may be called by the names: f07psc, nag_lapacklin_zhptrs or nag_zhptrs.

## 3Description

f07psc is used to solve a complex Hermitian indefinite system of linear equations $AX=B$, the function must be preceded by a call to f07prc which computes the Bunch–Kaufman factorization of $A$, using packed storage.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $A=PUD{U}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $P$ is a permutation matrix, $U$ is an upper triangular matrix and $D$ is an Hermitian block diagonal matrix with $1×1$ and $2×2$ blocks; the solution $X$ is computed by solving $PUDY=B$ and then ${U}^{\mathrm{H}}{P}^{\mathrm{T}}X=Y$.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $A=PLD{L}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $L$ is a lower triangular matrix; the solution $X$ is computed by solving $PLDY=B$ and then ${L}^{\mathrm{H}}{P}^{\mathrm{T}}X=Y$.

## 4References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{uplo}$Nag_UploType Input
On entry: specifies how $A$ has been factorized.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A=PUD{U}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $U$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A=PLD{L}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4: $\mathbf{nrhs}$Integer Input
On entry: $r$, the number of right-hand sides.
Constraint: ${\mathbf{nrhs}}\ge 0$.
5: $\mathbf{ap}\left[\mathit{dim}\right]$const Complex Input
Note: the dimension, dim, of the array ap must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
On entry: the factorization of $A$ stored in packed form, as returned by f07prc.
6: $\mathbf{ipiv}\left[\mathit{dim}\right]$const Integer Input
Note: the dimension, dim, of the array ipiv must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: details of the interchanges and the block structure of $D$, as returned by f07prc.
7: $\mathbf{b}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{nrhs}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $n×r$ right-hand side matrix $B$.
On exit: the $n×r$ solution matrix $X$.
8: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
9: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}>0$.
NE_INT_2
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

For each right-hand side vector $b$, the computed solution $x$ is the exact solution of a perturbed system of equations $\left(A+E\right)x=b$, where
• if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $|E|\le c\left(n\right)\epsilon P|U||D||{U}^{\mathrm{H}}|{P}^{\mathrm{T}}$;
• if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $|E|\le c\left(n\right)\epsilon P|L||D||{L}^{\mathrm{H}}|{P}^{\mathrm{T}}$,
$c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision.
If $\stackrel{^}{x}$ is the true solution, then the computed solution $x$ satisfies a forward error bound of the form
 $‖x-x^‖∞ ‖x‖∞ ≤c(n)cond(A,x)ε$
where $\mathrm{cond}\left(A,x\right)={‖|{A}^{-1}||A||x|‖}_{\infty }/{‖x‖}_{\infty }\le \mathrm{cond}\left(A\right)={‖|{A}^{-1}||A|‖}_{\infty }\le {\kappa }_{\infty }\left(A\right)$.
Note that $\mathrm{cond}\left(A,x\right)$ can be much smaller than $\mathrm{cond}\left(A\right)$.
Forward and backward error bounds can be computed by calling f07pvc, and an estimate for ${\kappa }_{\infty }\left(A\right)$ ($\text{}={\kappa }_{1}\left(A\right)$) can be obtained by calling f07puc.

## 8Parallelism and Performance

f07psc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of real floating-point operations is approximately $8{n}^{2}r$.
This function may be followed by a call to f07pvc to refine the solution and return an error estimate.
The real analogue of this function is f07pec.

## 10Example

This example solves the system of equations $AX=B$, where
 $A= ( -1.36+0.00i 1.58+0.90i 2.21-0.21i 3.91+1.50i 1.58-0.90i -8.87+0.00i -1.84-0.03i -1.78+1.18i 2.21+0.21i -1.84+0.03i -4.63+0.00i 0.11+0.11i 3.91-1.50i -1.78-1.18i 0.11-0.11i -1.84+0.00i )$
and
 $B= ( 7.79+05.48i -35.39+18.01i -0.77-16.05i 4.23-70.02i -9.58+03.88i -24.79-08.40i 2.98-10.18i 28.68-39.89i ) .$
Here $A$ is Hermitian indefinite, stored in packed form, and must first be factorized by f07prc.

### 10.1Program Text

Program Text (f07psce.c)

### 10.2Program Data

Program Data (f07psce.d)

### 10.3Program Results

Program Results (f07psce.r)