# NAG FL Interfaceg03bcf (rot_​procrustes)

## ▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

## 1Purpose

g03bcf computes Procrustes rotations in which an orthogonal rotation is found so that a transformed matrix best matches a target matrix.

## 2Specification

Fortran Interface
 Subroutine g03bcf ( n, m, x, ldx, y, ldy, yhat, r, ldr, rss, res, wk,
 Integer, Intent (In) :: n, m, ldx, ldy, ldr Integer, Intent (Inout) :: ifail Real (Kind=nag_wp), Intent (Inout) :: x(ldx,m), y(ldy,m), yhat(ldy,m), r(ldr,m) Real (Kind=nag_wp), Intent (Out) :: alpha, rss, res(n), wk(m*m+7*m) Character (1), Intent (In) :: stand, pscale
#include <nag.h>
 void g03bcf_ (const char *stand, const char *pscale, const Integer *n, const Integer *m, double x[], const Integer *ldx, double y[], const Integer *ldy, double yhat[], double r[], const Integer *ldr, double *alpha, double *rss, double res[], double wk[], Integer *ifail, const Charlen length_stand, const Charlen length_pscale)
The routine may be called by the names g03bcf or nagf_mv_rot_procrustes.

## 3Description

Let $X$ and $Y$ be $n×m$ matrices. They can be considered as representing sets of $n$ points in an $m$-dimensional space. The $X$ matrix may be a matrix of loadings from say factor or canonical variate analysis, and the $Y$ matrix may be a postulated pattern matrix or the loadings from a different sample. The problem is to relate the two sets of points without disturbing the relationships between the points in each set. This can be achieved by translating, rotating and scaling the sets of points. The $Y$ matrix is considered as the target matrix and the $X$ matrix is rotated to match that matrix.
First the two sets of points are translated so that their centroids are at the origin to give ${X}_{c}$ and ${Y}_{c}$, i.e., the matrices will have zero column means. Then the rotation of the translated ${X}_{c}$ matrix which minimizes the sum of squared distances between corresponding points in the two sets is found. This is computed from the singular value decomposition of the matrix:
 $XcTYc=UDVT,$
where $U$ and $V$ are orthogonal matrices and $D$ is a diagonal matrix. The matrix of rotations, $R$, is computed as:
 $R=UVT.$
After rotation, a scaling or dilation factor, $\alpha$, may be estimated by least squares. Thus, the final set of points that best match ${Y}_{c}$ is given by:
 $Y^c=αXcR.$
Before rotation, both sets of points may be normalized to have unit sums of squares or the $X$ matrix may be normalized to have the same sum of squares as the $Y$ matrix. After rotation, the results may be translated to the original $Y$ centroid.
The $i$th residual, ${r}_{i}$, is given by the distance between the point given in the $i$th row of $Y$ and the point given in the $i$th row of $\stackrel{^}{Y}$. The residual sum of squares is also computed.

## 4References

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method (2nd Edition) Butterworths

## 5Arguments

1: $\mathbf{stand}$Character(1) Input
On entry: indicates if translation/normalization is required.
${\mathbf{stand}}=\text{'N'}$
There is no translation or normalization.
${\mathbf{stand}}=\text{'Z'}$
There is translation to the origin (i.e., to zero).
${\mathbf{stand}}=\text{'C'}$
There is translation to origin and then to the $Y$ centroid after rotation.
${\mathbf{stand}}=\text{'U'}$
There is unit normalization.
${\mathbf{stand}}=\text{'S'}$
There is translation and normalization (i.e., there is standardization).
${\mathbf{stand}}=\text{'M'}$
There is translation and normalization to $Y$ scale, then translation to the $Y$ centroid after rotation (i.e., they are matched).
Constraint: ${\mathbf{stand}}=\text{'N'}$, $\text{'Z'}$, $\text{'C'}$, $\text{'U'}$, $\text{'S'}$ or $\text{'M'}$.
2: $\mathbf{pscale}$Character(1) Input
On entry: indicates if least squares scaling is to be applied after rotation.
${\mathbf{pscale}}=\text{'S'}$
Scaling is applied.
${\mathbf{pscale}}=\text{'U'}$
No scaling is applied.
Constraint: ${\mathbf{pscale}}=\text{'S'}$ or $\text{'U'}$.
3: $\mathbf{n}$Integer Input
On entry: $n$, the number of points.
Constraint: ${\mathbf{n}}\ge {\mathbf{m}}$.
4: $\mathbf{m}$Integer Input
On entry: $m$, the number of dimensions.
Constraint: ${\mathbf{m}}\ge 1$.
5: $\mathbf{x}\left({\mathbf{ldx}},{\mathbf{m}}\right)$Real (Kind=nag_wp) array Input/Output
On entry: $X$, the matrix to be rotated.
On exit: if ${\mathbf{stand}}=\text{'N'}$, x will be unchanged.
If ${\mathbf{stand}}=\text{'Z'}$, $\text{'C'}$, $\text{'S'}$ or $\text{'M'}$, x will be translated to have zero column means.
If ${\mathbf{stand}}=\text{'U'}$ or $\text{'S'}$, x will be scaled to have unit sum of squares.
If ${\mathbf{stand}}=\text{'M'}$, x will be scaled to have the same sum of squares as y.
6: $\mathbf{ldx}$Integer Input
On entry: the first dimension of the array x as declared in the (sub)program from which g03bcf is called.
Constraint: ${\mathbf{ldx}}\ge {\mathbf{n}}$.
7: $\mathbf{y}\left({\mathbf{ldy}},{\mathbf{m}}\right)$Real (Kind=nag_wp) array Input/Output
On entry: the target matrix, ${\mathbf{y}}$.
On exit: if ${\mathbf{stand}}=\text{'N'}$, y will be unchanged.
If ${\mathbf{stand}}=\text{'Z'}$ or $\text{'S'}$, y will be translated to have zero column means.
If ${\mathbf{stand}}=\text{'U'}$ or $\text{'S'}$, y will be scaled to have unit sum of squares.
If ${\mathbf{stand}}=\text{'C'}$ or $\text{'M'}$, y will be translated and then after rotation translated back. The output y should be the same as the input y except for rounding errors.
8: $\mathbf{ldy}$Integer Input
On entry: the first dimension of the arrays y and yhat as declared in the (sub)program from which g03bcf is called.
Constraint: ${\mathbf{ldy}}\ge {\mathbf{n}}$.
9: $\mathbf{yhat}\left({\mathbf{ldy}},{\mathbf{m}}\right)$Real (Kind=nag_wp) array Output
On exit: the fitted matrix, $\stackrel{^}{Y}$.
10: $\mathbf{r}\left({\mathbf{ldr}},{\mathbf{m}}\right)$Real (Kind=nag_wp) array Output
On exit: the matrix of rotations, $R$, see Section 9.
11: $\mathbf{ldr}$Integer Input
On entry: the first dimension of the array r as declared in the (sub)program from which g03bcf is called.
Constraint: ${\mathbf{ldr}}\ge {\mathbf{m}}$.
12: $\mathbf{alpha}$Real (Kind=nag_wp) Output
On exit: if ${\mathbf{pscale}}=\text{'S'}$ the scaling factor, $\alpha$; otherwise alpha is not set.
13: $\mathbf{rss}$Real (Kind=nag_wp) Output
On exit: the residual sum of squares.
14: $\mathbf{res}\left({\mathbf{n}}\right)$Real (Kind=nag_wp) array Output
On exit: the residuals, ${r}_{\mathit{i}}$, for $\mathit{i}=1,2,\dots ,n$.
15: $\mathbf{wk}\left({\mathbf{m}}×{\mathbf{m}}+7×{\mathbf{m}}\right)$Real (Kind=nag_wp) array Workspace
16: $\mathbf{ifail}$Integer Input/Output
On entry: ifail must be set to $0$, $-1$ or $1$ to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of $0$ causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of $-1$ means that an error message is printed while a value of $1$ means that it is not.
If halting is not appropriate, the value $-1$ or $1$ is recommended. If message printing is undesirable, then the value $1$ is recommended. Otherwise, the value $0$ is recommended. When the value $-\mathbf{1}$ or $\mathbf{1}$ is used it is essential to test the value of ifail on exit.
On exit: ${\mathbf{ifail}}={\mathbf{0}}$ unless the routine detects an error or a warning has been flagged (see Section 6).

## 6Error Indicators and Warnings

If on entry ${\mathbf{ifail}}=0$ or $-1$, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
${\mathbf{ifail}}=1$
On entry, ${\mathbf{ldr}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{ldr}}\ge {\mathbf{m}}$.
On entry, ${\mathbf{ldx}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{ldx}}\ge {\mathbf{n}}$.
On entry, ${\mathbf{ldy}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{ldy}}\ge {\mathbf{n}}$.
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}>0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge {\mathbf{m}}$.
On entry, ${\mathbf{pscale}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pscale}}=\text{'S'}$ or $\text{'U'}$.
On entry, ${\mathbf{stand}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{stand}}=\text{'N'}$, $\text{'Z'}$, $\text{'C'}$, $\text{'U'}$, $\text{'S'}$ or $\text{'M'}$.
${\mathbf{ifail}}=2$
Only one distinct point (centred at zero) in x array.
Only one distinct point (centred at zero) in y array.
${\mathbf{ifail}}=3$
yhat contains only zero-points when least squares scaling is applied.
${\mathbf{ifail}}=4$
The singular value decomposition has failed to converge. This is an unlikely error exit.
${\mathbf{ifail}}=-99$
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
${\mathbf{ifail}}=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
${\mathbf{ifail}}=-999$
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

## 7Accuracy

The accuracy of the calculation of the rotation matrix largely depends upon the singular value decomposition. See the F08 Chapter Introduction for further details.

## 8Parallelism and Performance

g03bcf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

Note that if the matrix ${X}_{c}^{\mathrm{T}}Y$ is not of full rank, then the matrix of rotations, $R$, may not be unique even if there is a unique solution in terms of the rotated matrix, ${\stackrel{^}{Y}}_{c}$. The matrix $R$ may also include reflections as well as pure rotations, see Krzanowski (1990).
If the column dimensions of the $X$ and $Y$ matrices are not equal, the smaller of the two should be supplemented by columns of zeros. Adding a column of zeros to both $X$ and $Y$ will have the effect of allowing reflections as well as rotations.

## 10Example

Three points representing the vertices of a triangle in two dimensions are input. The points are translated and rotated to match the triangle given by $\left(0,0\right)$, $\left(1,0\right)$, $\left(0,2\right)$ and scaling is applied after rotation. The target matrix and fitted matrix are printed along with additional information.

### 10.1Program Text

Program Text (g03bcfe.f90)

### 10.2Program Data

Program Data (g03bcfe.d)

### 10.3Program Results

Program Results (g03bcfe.r)