S – approximations of special functions
- S Introduction
- s01ba – ln(1+x)
- nag_specfun_log_shifted
- s01ea – Complex exponential, ez
- nag_specfun_exp_complex
- s07aa – tanx
- nag_specfun_tan
- s09aa – arcsinx
- nag_specfun_arcsin
- s09ab – arccosx
- nag_specfun_arccos
- s10aa – tanhx
- nag_specfun_tanh
- s10ab – sinhx
- nag_specfun_sinh
- s10ac – coshx
- nag_specfun_cosh
- s11aa – arctanhx
- nag_specfun_arctanh
- s11ab – arcsinhx
- nag_specfun_arcsinh
- s11ac – arccoshx
- nag_specfun_arccosh
- s13aa – Exponential integral E1(x)
- nag_specfun_integral_exp
- s13ac – Cosine integral Ci(x)
- nag_specfun_integral_cos
- s13ad – Sine integral Si(x)
- nag_specfun_integral_sin
- s14aa – Gamma function
- nag_specfun_gamma
- s14ab – Log gamma function, real argument
- nag_specfun_gamma_log_real
- s14ac – *(x)-lnx where *(x) is the psi function
- nag_specfun_polygamma
- s14ad – Scaled derivatives of ψ(x)
- nag_specfun_polygamma_deriv
- s14ae – Polygamma function ψ(n)(x) for real x
- nag_specfun_psi_deriv_real
- s14af – Polygamma function ψ(n)(z) for complex z
- nag_specfun_psi_deriv_complex
- s14ag – Logarithm of the gamma function lnΓ(z), complex argument
- nag_specfun_gamma_log_complex
- s14ah – Scaled log gamma function
- nag_specfun_gamma_log_scaled_real
- s14ba – Incomplete gamma functions P(ax) and Q(ax)
- nag_specfun_gamma_incomplete
- s14cb – Logarithm of the beta function lnB(ab)
- nag_specfun_beta_log_real
- s14cc – Incomplete beta function Ix(ab) and its complement 1-Ix
- nag_specfun_beta_incomplete
- s15ab – Cumulative Normal distribution function P(x)
- nag_specfun_cdf_normal
- s15ac – Complement of cumulative Normal distribution function Q(x)
- nag_specfun_compcdf_normal
- s15ad – Complement of error function erfc(x)
- nag_specfun_erfc_real
- s15ae – Error function erf(x)
- nag_specfun_erf_real
- s15af – Dawson's integral
- nag_specfun_dawson
- s15ag – Scaled complement of error function, erfcx(x)
- nag_specfun_erfcx_real
- s15dd – Scaled complex complement of error function, exp(-z2)erfc(-iz)
- nag_specfun_erfc_complex
- s17ac – Bessel function Y0(x)
- nag_specfun_bessel_y0_real
- s17ad – Bessel function Y1(x)
- nag_specfun_bessel_y1_real
- s17ae – Bessel function J0(x)
- nag_specfun_bessel_j0_real
- s17af – Bessel function J1(x)
- nag_specfun_bessel_j1_real
- s17ag – Airy function Ai(x)
- nag_specfun_airy_ai_real
- s17ah – Airy function Bi(x)
- nag_specfun_airy_bi_real
- s17aj – Airy function Ai'(x)
- nag_specfun_airy_ai_deriv
- s17ak – Airy function Bi'(x)
- nag_specfun_airy_bi_deriv
- s17al – Zeros of Bessel functions Jα(x), J'α(x), Yα(x) or Y'α(x)
- nag_specfun_bessel_zeros
- s17aq – Bessel function vectorized Y0(x)
- nag_specfun_bessel_y0_real_vector
- s17ar – Bessel function vectorized Y1(x)
- nag_specfun_bessel_y1_real_vector
- s17as – Bessel function vectorized J0(x)
- nag_specfun_bessel_j0_real_vector
- s17at – Bessel function vectorized J1(x)
- nag_specfun_bessel_j1_real_vector
- s17au – Airy function vectorized Ai(x)
- nag_specfun_airy_ai_real_vector
- s17av – Airy function vectorized Bi(x)
- nag_specfun_airy_bi_real_vector
- s17aw – Derivatives of the Airy function, vectorized Ai'(x)
- nag_specfun_airy_ai_deriv_vector
- s17ax – Derivatives of the Airy function, vectorized Bi'(x)
- nag_specfun_airy_bi_deriv_vector
- s17dc – Bessel functions Yν+a(z), real a≥0, complex z, ν=0,1,2,…
- nag_specfun_bessel_y_complex
- s17de – Bessel functions Jν+a(z), real a≥0, complex z, ν=0,1,2,…
- nag_specfun_bessel_j_complex
- s17dg – Airy functions Ai(z) and Ai'(z), complex z
- nag_specfun_airy_ai_complex
- s17dh – Airy functions Bi(z) and Bi'(z), complex z
- nag_specfun_airy_bi_complex
- s17dl – Hankel functions Hν+a(j)(z), j=1,2, real a≥0, complex z, ν=0,1,2,…
- nag_specfun_hankel_complex
- s18ac – Modified Bessel function K0(x)
- nag_specfun_bessel_k0_real
- s18ad – Modified Bessel function K1(x)
- nag_specfun_bessel_k1_real
- s18ae – Modified Bessel function I0(x)
- nag_specfun_bessel_i0_real
- s18af – Modified Bessel function I1(x)
- nag_specfun_bessel_i1_real
- s18aq – Modified Bessel function vectorized K0(x)
- nag_specfun_bessel_k0_real_vector
- s18ar – Modified Bessel function vectorized K1(x)
- nag_specfun_bessel_k1_real_vector
- s18as – Modified Bessel function vectorized I0(x)
- nag_specfun_bessel_i0_real_vector
- s18at – Modified Bessel function vectorized I1(x)
- nag_specfun_bessel_i1_real_vector
- s18cc – Scaled modified Bessel function exK0(x)
- nag_specfun_bessel_k0_scaled
- s18cd – Scaled modified Bessel function exK1(x)
- nag_specfun_bessel_k1_scaled
- s18ce – Scaled modified Bessel function e-|x|I0(x)
- nag_specfun_bessel_i0_scaled
- s18cf – Scaled modified Bessel function e-|x|I1(x)
- nag_specfun_bessel_i1_scaled
- s18cq – Scaled modified Bessel function vectorized exK0(x)
- nag_specfun_bessel_k0_scaled_vector
- s18cr – Scaled modified Bessel function vectorized exK1(x)
- nag_specfun_bessel_k1_scaled_vector
- s18cs – Scaled modified Bessel function vectorized e-|x|I0(x)
- nag_specfun_bessel_i0_scaled_vector
- s18ct – Scaled modified Bessel function vectorized e-|x|I1(x)
- nag_specfun_bessel_i1_scaled_vector
- s18dc – Modified Bessel functions Kν+a(z), real a≥0, complex z, ν=0,1,2,…
- nag_specfun_bessel_k_complex
- s18de – Modified Bessel functions Iν+a(z), real a≥0, complex z, ν=0,1,2,…
- nag_specfun_bessel_i_complex
- s18gk – Bessel function of the 1st kind Jα±n(z)
- nag_specfun_bessel_j_seq_complex
- s19aa – Kelvin function berx
- nag_specfun_kelvin_ber
- s19ab – Kelvin function beix
- nag_specfun_kelvin_bei
- s19ac – Kelvin function kerx
- nag_specfun_kelvin_ker
- s19ad – Kelvin function keix
- nag_specfun_kelvin_kei
- s19an – Kelvin function vectorized berx
- nag_specfun_kelvin_ber_vector
- s19ap – Kelvin function vectorized beix
- nag_specfun_kelvin_bei_vector
- s19aq – Kelvin function vectorized kerx
- nag_specfun_kelvin_ker_vector
- s19ar – Kelvin function vectorized keix
- nag_specfun_kelvin_kei_vector
- s20ac – Fresnel integral S(x)
- nag_specfun_fresnel_s
- s20ad – Fresnel integral C(x)
- nag_specfun_fresnel_c
- s20aq – Fresnel integral vectorized S(x)
- nag_specfun_fresnel_s_vector
- s20ar – Fresnel integral vectorized C(x)
- nag_specfun_fresnel_c_vector
- s21ba – Degenerate symmetrised elliptic integral of 1st kind RC(xy)
- nag_specfun_ellipint_symm_1_degen
- s21bb – Symmetrised elliptic integral of 1st kind RF(xyz)
- nag_specfun_ellipint_symm_1
- s21bc – Symmetrised elliptic integral of 2nd kind RD(xyz)
- nag_specfun_ellipint_symm_2
- s21bd – Symmetrised elliptic integral of 3rd kind RJ(xyzr)
- nag_specfun_ellipint_symm_3
- s21be – Elliptic integral of 1st kind, Legendre form, F(ϕ∣m)
- nag_specfun_ellipint_legendre_1
- s21bf – Elliptic integral of 2nd kind, Legendre form, E (ϕ∣m)
- nag_specfun_ellipint_legendre_2
- s21bg – Elliptic integral of 3rd kind, Legendre form, Π (n;ϕ∣m)
- nag_specfun_ellipint_legendre_3
- s21bh – Complete elliptic integral of 1st kind, Legendre form, K (m)
- nag_specfun_ellipint_complete_1
- s21bj – Complete elliptic integral of 2nd kind, Legendre form, E (m)
- nag_specfun_ellipint_complete_2
- s21ca – Jacobian elliptic functions sn, cn and dn of real argument
- nag_specfun_jacellip_real
- s21cb – Jacobian elliptic functions sn, cn and dn of complex argument
- nag_specfun_jacellip_complex
- s21cc – Jacobian theta functions θk(xq) of real argument
- nag_specfun_jactheta_real
- s21da – General elliptic integral of 2nd kind F(zk'ab) of complex argument
- nag_specfun_ellipint_general_2
- s22aa – Legendre functions of 1st kind
Pnm(x)
or Pnm(x)
- nag_specfun_legendre_p
- s22ba – Real confluent hypergeometric function 1F1
(abx)
- nag_specfun_1f1_real
- s22bb – Real confluent hypergeometric function
1F1
(abx)
in scaled form
- nag_specfun_1f1_real_scaled
- s22be – Real Gauss hypergeometric function
2F1
(a,bcx)
- nag_specfun_2f1_real
- s22bf – Real Gauss hypergeometric function
2F1
(a,b;c;x)
in scaled form.
- nag_specfun_2f1_real_scaled
- s30aa – Black–Scholes–Merton option pricing formula
- nag_specfun_opt_bsm_price
- s30ab – Black–Scholes–Merton option pricing formula with Greeks
- nag_specfun_opt_bsm_greeks
- s30ba – Floating-strike lookback option pricing formula in the Black-Scholes-Merton model
- nag_specfun_opt_lookback_fls_price
- s30bb – Floating-strike lookback option pricing formula with Greeks in the Black-Scholes-Merton model
- nag_specfun_opt_lookback_fls_greeks
- s30ca – Binary option, cash-or-nothing pricing formula
- nag_specfun_opt_binary_con_price
- s30cb – Binary option, cash-or-nothing pricing formula with Greeks
- nag_specfun_opt_binary_con_greeks
- s30cc – Binary option, asset-or-nothing pricing formula
- nag_specfun_opt_binary_aon_price
- s30cd – Binary option, asset-or-nothing pricing formula with Greeks
- nag_specfun_opt_binary_aon_greeks
- s30fa – Standard barrier option pricing formula
- nag_specfun_opt_barrier_std_price
- s30ja – Jump-diffusion, Merton's model, option pricing formula
- nag_specfun_opt_jumpdiff_merton_price
- s30jb – Jump-diffusion, Merton's model, option pricing formula with Greeks
- nag_specfun_opt_jumpdiff_merton_greeks
- s30na – Heston's model option pricing formula
- nag_specfun_opt_heston_price
- s30nb – Heston's model option pricing formula with Greeks
- nag_specfun_opt_heston_greeks
- s30nc – Heston's model option pricing with term structure
- nag_specfun_opt_heston_term
- s30qc – American option, Bjerksund and Stensland pricing formula
- nag_specfun_opt_amer_bs_price
- s30sa – Asian option, geometric continuous average rate pricing formula
- nag_specfun_opt_asian_geom_price
- s30sb – Asian option, geometric continuous average rate pricing formula with Greeks
- nag_specfun_opt_asian_geom_greeks