hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_bessel_k1_real_vector (s18ar)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_bessel_k1_real_vector (s18ar) returns an array of values of the modified Bessel function K1x.

Syntax

[f, ivalid, ifail] = s18ar(x, 'n', n)
[f, ivalid, ifail] = nag_specfun_bessel_k1_real_vector(x, 'n', n)

Description

nag_specfun_bessel_k1_real_vector (s18ar) evaluates an approximation to the modified Bessel function of the second kind K1xi for an array of arguments xi, for i=1,2,,n.
Note:  K1x is undefined for x0 and the function will fail for such arguments.
The function is based on five Chebyshev expansions:
For 0<x1,
K1x=1x+xlnxr=0arTrt-xr=0brTrt,   where ​ t=2x2-1.  
For 1<x2,
K1x=e-xr=0crTrt,   where ​t=2x-3.  
For 2<x4,
K1x=e-xr=0drTrt,   where ​t=x-3.  
For x>4,
K1x=e-xx r=0erTrt,   where ​t=9-x 1+x .  
For x near zero, K1x 1x . This approximation is used when x is sufficiently small for the result to be correct to machine precision. For very small x it is impossible to calculate 1x  without overflow and the function must fail.
For large x, where there is a danger of underflow due to the smallness of K1, the result is set exactly to zero.

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Parameters

Compulsory Input Parameters

1:     xn – double array
The argument xi of the function, for i=1,2,,n.
Constraint: xi>0.0, for i=1,2,,n.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array x.
n, the number of points.
Constraint: n0.

Output Parameters

1:     fn – double array
K1xi, the function values.
2:     ivalidn int64int32nag_int array
ivalidi contains the error code for xi, for i=1,2,,n.
ivalidi=0
No error.
ivalidi=1
xi0.0, K1xi is undefined. fi contains 0.0.
ivalidi=2
xi is too small, there is a danger of overflow. fi contains zero. The threshold value is the same as for ifail=2 in nag_specfun_bessel_k1_real (s18ad), as defined in the Users' Note for your implementation.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=1
On entry, at least one value of x was invalid.
Check ivalid for more information.
   ifail=2
Constraint: n0.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Let δ and ε be the relative errors in the argument and result respectively.
If δ is somewhat larger than the machine precision (i.e., if δ is due to data errors etc.), then ε and δ are approximately related by:
ε x K0x- K1x K1x δ.  
Figure 1 shows the behaviour of the error amplification factor
xK0x - K1 x K1x .  
However if δ is of the same order as the machine precision, then rounding errors could make ε slightly larger than the above relation predicts.
For small x, εδ and there is no amplification of errors.
For large x, εxδ and we have strong amplification of the relative error. Eventually K1, which is asymptotically given by e-xx , becomes so small that it cannot be calculated without underflow and hence the function will return zero. Note that for large x the errors will be dominated by those of the standard function exp.
Figure 1
Figure 1

Further Comments

None.

Example

This example reads values of x from a file, evaluates the function at each value of xi and prints the results.
function s18ar_example


fprintf('s18ar example results\n\n');

x = [0.4; 0.6; 1.4; 1.6; 2.5; 3.5; 6; 8; 10; 1000];

[f, ivalid, ifail] = s18ar(x);

fprintf('     x           K_1(x)   ivalid\n');
for i=1:numel(x)
  fprintf('%12.3e%12.3e%5d\n', x(i), f(i), ivalid(i));
end



s18ar example results

     x           K_1(x)   ivalid
   4.000e-01   2.184e+00    0
   6.000e-01   1.303e+00    0
   1.400e+00   3.208e-01    0
   1.600e+00   2.406e-01    0
   2.500e+00   7.389e-02    0
   3.500e+00   2.224e-02    0
   6.000e+00   1.344e-03    0
   8.000e+00   1.554e-04    0
   1.000e+01   1.865e-05    0
   1.000e+03   0.000e+00    0

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015