hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_kelvin_ber_vector (s19an)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_kelvin_ber_vector (s19an) returns an array of values for the Kelvin function berx.

Syntax

[f, ivalid, ifail] = s19an(x, 'n', n)
[f, ivalid, ifail] = nag_specfun_kelvin_ber_vector(x, 'n', n)

Description

nag_specfun_kelvin_ber_vector (s19an) evaluates an approximation to the Kelvin function berxi for an array of arguments xi, for i=1,2,,n.
Note:  ber-x=berx, so the approximation need only consider x0.0.
The function is based on several Chebyshev expansions:
For 0x5,
berx=r=0arTrt,   with ​ t=2 x5 4-1.  
For x>5,
berx= e x/2 2πx 1+ 1 x a t cosα + 1x b tsinα + e-x/22πx 1+ 1xct sinβ+ 1xdtcosβ ,  
where α= x2- π8 , β= x2+ π8 ,
and at, bt, ct, and dt are expansions in the variable t= 10x-1.
When x is sufficiently close to zero, the result is set directly to ber0=1.0.
For large x, there is a danger of the result being totally inaccurate, as the error amplification factor grows in an essentially exponential manner; therefore the function must fail.

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Parameters

Compulsory Input Parameters

1:     xn – double array
The argument xi of the function, for i=1,2,,n.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array x.
n, the number of points.
Constraint: n0.

Output Parameters

1:     fn – double array
berxi, the function values.
2:     ivalidn int64int32nag_int array
ivalidi contains the error code for xi, for i=1,2,,n.
ivalidi=0
No error.
ivalidi=1
absxi is too large for an accurate result to be returned. fi contains zero. The threshold value is the same as for ifail=1 in nag_specfun_kelvin_ber (s19aa), as defined in the Users' Note for your implementation.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=1
On entry, at least one value of x was invalid.
Check ivalid for more information.
   ifail=2
Constraint: n0.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Since the function is oscillatory, the absolute error rather than the relative error is important. Let E be the absolute error in the result and δ be the relative error in the argument. If δ is somewhat larger than the machine precision, then we have:
E x2 ber1x+ bei1x δ  
(provided E is within machine bounds).
For small x the error amplification is insignificant and thus the absolute error is effectively bounded by the machine precision.
For medium and large x, the error behaviour is oscillatory and its amplitude grows like x 2π e x/2 . Therefore it is not possible to calculate the function with any accuracy when x e x/2 > 2π δ . Note that this value of x is much smaller than the minimum value of x for which the function overflows.

Further Comments

None.

Example

This example reads values of x from a file, evaluates the function at each value of xi and prints the results.
function s19an_example


fprintf('s19an example results\n\n');

x = [0.1; 1; 2.5; 5; 10; 15; -1];

[f, ivalid, ifail] = s19an(x);

fprintf('     x           ber(x)   ivalid\n');
for i=1:numel(x)
  fprintf('%12.3e%12.3e%5d\n', x(i), f(i), ivalid(i));
end



s19an example results

     x           ber(x)   ivalid
   1.000e-01   1.000e+00    0
   1.000e+00   9.844e-01    0
   2.500e+00   4.000e-01    0
   5.000e+00  -6.230e+00    0
   1.000e+01   1.388e+02    0
   1.500e+01  -2.967e+03    0
  -1.000e+00   9.844e-01    0

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015