hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_bessel_k1_scaled (s18cd)


    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example


nag_specfun_bessel_k1_scaled (s18cd) returns a value of the scaled modified Bessel function exK1x via the function name.


[result, ifail] = s18cd(x)
[result, ifail] = nag_specfun_bessel_k1_scaled(x)


nag_specfun_bessel_k1_scaled (s18cd) evaluates an approximation to exK1x, where K1 is a modified Bessel function of the second kind. The scaling factor ex removes most of the variation in K1x.
The function uses the same Chebyshev expansions as nag_specfun_bessel_k1_real (s18ad), which returns the unscaled value of K1x.


Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications


Compulsory Input Parameters

1:     x – double scalar
The argument x of the function.
Constraint: x>0.0.

Optional Input Parameters


Output Parameters

1:     result – double scalar
The result of the function.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
On entry, x0.0: K1 is undefined. On soft failure nag_specfun_bessel_k1_scaled (s18cd) returns zero.
On entry, x is too close to zero, as determined by the value of the safe-range parameter nag_machine_real_safe (x02am): there is a danger of causing overflow. On soft failure, nag_specfun_bessel_k1_scaled (s18cd) returns the reciprocal of the safe-range parameter.
An unexpected error has been triggered by this routine. Please contact NAG.
Your licence key may have expired or may not have been installed correctly.
Dynamic memory allocation failed.


Relative errors in the argument are attenuated when propagated into the function value. When the accuracy of the argument is essentially limited by the machine precision, the accuracy of the function value will be similarly limited by at most a small multiple of the machine precision.

Further Comments



This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.
function s18cd_example

fprintf('s18cd example results\n\n');

x = [0.4  0.6  1.4  2.5  10  1000];
n = size(x,2);
result = x;

for j=1:n
  [result(j), ifail] = s18cd(x(j));

disp('      x        e^xK_1(x)');
fprintf('%12.3e%12.3e\n',[x; result]);

s18cd example results

      x        e^xK_1(x)
   4.000e-01   3.259e+00
   6.000e-01   2.374e+00
   1.400e+00   1.301e+00
   2.500e+00   9.002e-01
   1.000e+01   4.108e-01
   1.000e+03   3.965e-02

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015