hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_opt_jumpdiff_merton_greeks (s30jb)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_opt_jumpdiff_merton_greeks (s30jb) computes the European option price together with its sensitivities (Greeks) using the Merton jump-diffusion model.

Syntax

[p, delta, gamma, vega, theta, rho, vanna, charm, speed, colour, zomma, vomma, ifail] = s30jb(calput, x, s, t, sigma, r, lambda, jvol, 'm', m, 'n', n)
[p, delta, gamma, vega, theta, rho, vanna, charm, speed, colour, zomma, vomma, ifail] = nag_specfun_opt_jumpdiff_merton_greeks(calput, x, s, t, sigma, r, lambda, jvol, 'm', m, 'n', n)

Description

nag_specfun_opt_jumpdiff_merton_greeks (s30jb) uses Merton's jump-diffusion model (Merton (1976)) to compute the price of a European option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. Merton's model assumes that the asset price is described by a Brownian motion with drift, as in the Black–Scholes–Merton case, together with a compound Poisson process to model the jumps. The corresponding stochastic differential equation is,
dS S = α-λk dt + σ^ dWt + dqt .  
Here α is the instantaneous expected return on the asset price, S; σ^2 is the instantaneous variance of the return when the Poisson event does not occur; dWt is a standard Brownian motion; qt is the independent Poisson process and k=EY-1 where Y-1 is the random variable change in the stock price if the Poisson event occurs and E is the expectation operator over the random variable Y.
This leads to the following price for a European option (see Haug (2007))
Pcall = j=0 e-λT λTj j! Cj S, X, T, r, σj ,  
where T is the time to expiry; X is the strike price; r is the annual risk-free interest rate; CjS,X,T,r,σj is the Black–Scholes–Merton option pricing formula for a European call (see nag_specfun_opt_bsm_price (s30aa)).
σj = z2 + δ2 j T , z2 = σ2 - λ δ2 , δ2 = γ σ2 λ ,  
where σ is the total volatility including jumps; λ is the expected number of jumps given as an average per year; γ is the proportion of the total volatility due to jumps.
The value of a put is obtained by substituting the Black–Scholes–Merton put price for Cj S, X, T, r, σj .
The option price Pij=PX=Xi,T=Tj is computed for each strike price in a set Xi, i=1,2,,m, and for each expiry time in a set Tj, j=1,2,,n.

References

Haug E G (2007) The Complete Guide to Option Pricing Formulas (2nd Edition) McGraw-Hill
Merton R C (1976) Option pricing when underlying stock returns are discontinuous Journal of Financial Economics 3 125–144

Parameters

Compulsory Input Parameters

1:     calput – string (length ≥ 1)
Determines whether the option is a call or a put.
calput='C'
A call; the holder has a right to buy.
calput='P'
A put; the holder has a right to sell.
Constraint: calput='C' or 'P'.
2:     xm – double array
xi must contain Xi, the ith strike price, for i=1,2,,m.
Constraint: xiz ​ and ​ xi 1 / z , where z = x02am , the safe range parameter, for i=1,2,,m.
3:     s – double scalar
S, the price of the underlying asset.
Constraint: sz ​ and ​s1.0/z, where z=x02am, the safe range parameter.
4:     tn – double array
ti must contain Ti, the ith time, in years, to expiry, for i=1,2,,n.
Constraint: tiz, where z = x02am , the safe range parameter, for i=1,2,,n.
5:     sigma – double scalar
σ, the annual total volatility, including jumps.
Constraint: sigma>0.0.
6:     r – double scalar
r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint: r0.0.
7:     lambda – double scalar
λ, the number of expected jumps per year.
Constraint: lambda>0.0.
8:     jvol – double scalar
The proportion of the total volatility associated with jumps.
Constraint: 0.0jvol<1.0.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the dimension of the array x.
The number of strike prices to be used.
Constraint: m1.
2:     n int64int32nag_int scalar
Default: the dimension of the array t.
The number of times to expiry to be used.
Constraint: n1.

Output Parameters

1:     pldpn – double array
ldp=m.
pij contains Pij, the option price evaluated for the strike price xi at expiry tj for i=1,2,,m and j=1,2,,n.
2:     deltaldpn – double array
ldp=m.
The leading m×n part of the array delta contains the sensitivity, PS, of the option price to change in the price of the underlying asset.
3:     gammaldpn – double array
ldp=m.
The leading m×n part of the array gamma contains the sensitivity, 2PS2, of delta to change in the price of the underlying asset.
4:     vegaldpn – double array
ldp=m.
vegaij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the volatility of the underlying asset, i.e., Pij σ , for i=1,2,,m and j=1,2,,n.
5:     thetaldpn – double array
ldp=m.
thetaij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in time, i.e., - Pij T , for i=1,2,,m and j=1,2,,n, where b=r-q.
6:     rholdpn – double array
ldp=m.
rhoij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the annual risk-free interest rate, i.e., - Pij r , for i=1,2,,m and j=1,2,,n.
7:     vannaldpn – double array
ldp=m.
vannaij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the asset price, i.e., - Δij T = - 2 Pij Sσ , for i=1,2,,m and j=1,2,,n.
8:     charmldpn – double array
ldp=m.
charmij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the time, i.e., - Δij T = - 2 Pij ST , for i=1,2,,m and j=1,2,,n.
9:     speedldpn – double array
ldp=m.
speedij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the price of the underlying asset, i.e., - Γij S = - 3 Pij S3 , for i=1,2,,m and j=1,2,,n.
10:   colourldpn – double array
ldp=m.
colourij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the time, i.e., - Γij T = - 3 Pij ST , for i=1,2,,m and j=1,2,,n.
11:   zommaldpn – double array
ldp=m.
zommaij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the volatility of the underlying asset, i.e., - Γij σ = - 3 Pij S2σ , for i=1,2,,m and j=1,2,,n.
12:   vommaldpn – double array
ldp=m.
vommaij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the underlying asset, i.e., - Δij σ = - 2 Pij σ2 , for i=1,2,,m and j=1,2,,n.
13:   ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry, calput=_ was an illegal value.
   ifail=2
Constraint: m1.
   ifail=3
Constraint: n1.
   ifail=4
Constraint: xi_ and xi_.
   ifail=5
Constraint: s_ and s_.
   ifail=6
Constraint: ti_.
   ifail=7
Constraint: sigma>0.0.
   ifail=8
Constraint: r0.0.
   ifail=9
Constraint: lambda>0.0.
   ifail=10
Constraint: jvol0.0 and jvol < 1.0.
   ifail=12
Constraint: ldpm.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, Φ, occurring in Cj. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see nag_specfun_cdf_normal (s15ab) and nag_specfun_erfc_real (s15ad)). An accuracy close to machine precision can generally be expected.

Further Comments

None.

Example

This example computes the price of two European calls with jumps. The time to expiry is 6 months, the stock price is 100 and strike prices are 80 and 90 respectively. The number of jumps per year is 5 and the percentage of the total volatility due to jumps is 25%. The risk-free interest rate is 8% per year while the total volatility is 25% per year.
function s30jb_example


fprintf('s30jb example results\n\n');

put    = 'C';
lambda = 5;
s      = 100.0;
sigma  = 0.25;
r      = 0.08;
jvol   = 0.25;
x      = [80.0, 90.0];
t      = [0.5];

[p, delta, gamma, vega,   theta, rho, ...
    vanna, charm, speed, colour, zomma, vomma, ifail] = ...
    s30jb(...
          put, x, s, t, sigma, r, lambda, jvol);


fprintf('\nMerton Jump-Diffusion Model\n European Call :\n');
fprintf('  Spot       =   %9.4f\n', s);
fprintf('  Volatility =   %9.4f\n', sigma);
fprintf('  Rate       =   %9.4f\n', r);
fprintf('  Jumps      =   %9.4f\n', lambda);
fprintf('  Jump Vol   =   %9.4f\n\n', jvol);

fprintf(' Time to Expiry : %8.4f\n', t(1));

fprintf('%8s%9s%9s%9s%9s%9s%9s\n','Strike','Price','Delta','Gamma',...
        'Vega','Theta','Rho');
for i=1:2
  fprintf('%8.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n', x(i), p(i,1), ...
          delta(i,1), gamma(i,1), vega(i,1), theta(i,1), rho(i,1));
end

fprintf('\n%26s%9s%9s%9s%9s%9s\n','Vanna','Charm','Speed','Colour',...
        'Zomma','Vomma');
for i=1:2
  fprintf('%17s%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n', ' ', vanna(i,1), ...
          charm(i,1), speed(i,1), colour(i,1), zomma(i,1), vomma(i,1));
end


s30jb example results


Merton Jump-Diffusion Model
 European Call :
  Spot       =    100.0000
  Volatility =      0.2500
  Rate       =      0.0800
  Jumps      =      5.0000
  Jump Vol   =      0.2500

 Time to Expiry :   0.5000
  Strike    Price    Delta    Gamma     Vega    Theta      Rho
 80.0000  23.6090   0.9431   0.0064   8.1206  -7.6718  35.3480
 90.0000  15.4193   0.8203   0.0149  18.5256  -9.9695  33.3037

                     Vanna    Charm    Speed   Colour    Zomma    Vomma
                   -0.6334   0.1080  -0.0006  -0.0035   0.0315  70.6824
                   -0.7726   0.0770  -0.0009   0.0109  -0.0186  49.7161

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015