Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

## Purpose

nag_specfun_fresnel_c (s20ad) returns a value for the Fresnel integral $C\left(x\right)$, via the function name.

## Syntax

[result, ifail] = nag_specfun_fresnel_c(x)

## Description

nag_specfun_fresnel_c (s20ad) evaluates an approximation to the Fresnel integral
 $Cx=∫0xcosπ2t2dt.$
Note:  $C\left(x\right)=-C\left(-x\right)$, so the approximation need only consider $x\ge 0.0$.
The function is based on three Chebyshev expansions:
For $0,
 $Cx=x∑′r=0arTrt, with ​ t=2 x3 4-1.$
For $x>3$,
 $Cx=12+fxxsinπ2x2-gxx3cosπ2x2 ,$
where $f\left(x\right)=\underset{r=0}{{\sum }^{\prime }}\phantom{\rule{0.25em}{0ex}}{b}_{r}{T}_{r}\left(t\right)$,
and $g\left(x\right)=\underset{r=0}{{\sum }^{\prime }}\phantom{\rule{0.25em}{0ex}}{c}_{r}{T}_{r}\left(t\right)$,
with $t=2{\left(\frac{3}{x}\right)}^{4}-1$.
For small $x$, $C\left(x\right)\simeq x$. This approximation is used when $x$ is sufficiently small for the result to be correct to machine precision.
For large $x$, $f\left(x\right)\simeq \frac{1}{\pi }$ and $g\left(x\right)\simeq \frac{1}{{\pi }^{2}}$. Therefore for moderately large $x$, when $\frac{1}{{\pi }^{2}{x}^{3}}$ is negligible compared with $\frac{1}{2}$, the second term in the approximation for $x>3$ may be dropped. For very large $x$, when $\frac{1}{\pi x}$ becomes negligible, $C\left(x\right)\simeq \frac{1}{2}$. However there will be considerable difficulties in calculating $\mathrm{sin}\left(\frac{\pi }{2}{x}^{2}\right)$ accurately before this final limiting value can be used. Since $\mathrm{sin}\left(\frac{\pi }{2}{x}^{2}\right)$ is periodic, its value is essentially determined by the fractional part of ${x}^{2}$. If ${x}^{2}=N+\theta$, where $N$ is an integer and $0\le \theta <1$, then $\mathrm{sin}\left(\frac{\pi }{2}{x}^{2}\right)$ depends on $\theta$ and on $N$ modulo $4$. By exploiting this fact, it is possible to retain some significance in the calculation of $\mathrm{sin}\left(\frac{\pi }{2}{x}^{2}\right)$ either all the way to the very large $x$ limit, or at least until the integer part of $\frac{x}{2}$ is equal to the maximum integer allowed on the machine.

## References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{x}$ – double scalar
The argument $x$ of the function.

None.

### Output Parameters

1:     $\mathrm{result}$ – double scalar
The result of the function.
2:     $\mathrm{ifail}$int64int32nag_int scalar
${\mathbf{ifail}}={\mathbf{0}}$ unless the function detects an error (see Error Indicators and Warnings).

## Error Indicators and Warnings

There are no failure exits from nag_specfun_fresnel_c (s20ad). The argument ifail has been included for consistency with other functions in this chapter.

## Accuracy

Let $\delta$ and $\epsilon$ be the relative errors in the argument and result respectively.
If $\delta$ is somewhat larger than the machine precision (i.e if $\delta$ is due to data errors etc.), then $\epsilon$ and $\delta$ are approximately related by:
 $ε≃ x cos π2 x2 Cx δ.$
Figure 1 shows the behaviour of the error amplification factor $\left|\frac{x\mathrm{cos}\left(\frac{\pi }{2}{x}^{2}\right)}{C\left(x\right)}\right|$.
However, if $\delta$ is of the same order as the machine precision, then rounding errors could make $\epsilon$ slightly larger than the above relation predicts.
For small $x$, $\epsilon \simeq \delta$ and there is no amplification of relative error.
For moderately large values of $x$,
 $ε≃ 2x cos π2 x2 δ$
and the result will be subject to increasingly large amplification of errors. However the above relation breaks down for large values of $x$ (i.e., when $\frac{1}{{x}^{2}}$ is of the order of the machine precision); in this region the relative error in the result is essentially bounded by $\frac{2}{\pi x}$.
Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.
Figure 1

None.

## Example

This example reads values of the argument $x$ from a file, evaluates the function at each value of $x$ and prints the results.
```function s20ad_example

x = [0   0.5   1   2   4   5   6   8   10   -1   1000];
n = size(x,2);
result = x;

for j=1:n
end

disp('      x          C(x)');
fprintf('%12.3e%12.3e\n',[x; result]);

x = [-10:0.02:10];
for j = 1:numel(x)
end

fig1 = figure;
plot(x,C,'-r');
xlabel('x');
ylabel('C(x)');
title('Fresnel Integral C(x)');

```
```s20ad example results

x          C(x)
0.000e+00   0.000e+00
5.000e-01   4.923e-01
1.000e+00   7.799e-01
2.000e+00   4.883e-01
4.000e+00   4.984e-01
5.000e+00   5.636e-01
6.000e+00   4.995e-01
8.000e+00   4.998e-01
1.000e+01   4.999e-01
-1.000e+00  -7.799e-01
1.000e+03   5.000e-01
```