library.opt
Submodule¶
Module Summary¶
Interfaces for the NAG Mark 30.2 opt Chapter.
opt
- Minimizing or Maximizing a Function
This module provides functions for solving various mathematical optimization problems by solvers based on local stopping criteria. The main classes of problems covered in this module are:
Linear Programming (LP) – dense and sparse;
Quadratic Programming (QP) – convex and nonconvex, dense and sparse;
Quadratically Constrained Quadratic Programming (QCQP) – convex and nonconvex;
Nonlinear Programming (NLP) – dense and sparse, based on active-set SQP methods or interior point methods (IPM);
Second-order Cone Programming (SOCP);
Semidefinite Programming (SDP) – both linear matrix inequalities (LMI) and bilinear matrix inequalities (BMI);
Derivative-free Optimization (DFO);
Least Squares (LSQ) – linear and nonlinear, constrained and unconstrained;
General Nonlinear Data Fitting (NLDF) – nonlinear loss functions with regularization, constrained and unconstrained.
For a full overview of the functionality offered in this module, see the functionality index or the Module Contents (submodule opt
).
See also other modules in the NAG Library relevant to optimization:
submodule
glopt
contains functions to solve global optimization problems;submodule
mip
addresses problems arising in operational research and focuses on Mixed Integer Programming (MIP);submodule
lapacklin
and submodulelapackeig
include functions for linear algebra and in particular unconstrained linear least squares;submodule
fit
focuses on curve and surface fitting, in which linear data fitting in or norm might be of interest;submodule
correg
offers several regression (data fitting) functions, including linear, nonlinear and quantile regression, LARS, LASSO and others.
See Also¶
naginterfaces.library.examples.opt
:This subpackage contains examples for the
opt
module. See also the Examples subsection.
Functionality Index¶
Linear programming (LP)
dense
active-set method/primal simplex
alternative 1:
lp_solve()
alternative 2:
lsq_lincon_solve()
sparse
interior point method (IPM):
handle_solve_lp_ipm()
simplex:
handle_solve_lp_simplex()
active-set method/primal simplex
recommended (see the E04 Introduction):
qpconvex2_sparse_solve()
alternative:
qpconvex1_sparse_solve()
Quadratic programming (QP)
dense
active-set method for (possibly nonconvex) QP problem:
qp_dense_solve()
active-set method for convex QP problem:
lsq_lincon_solve()
sparse
active-set method sparse convex QP problem
recommended (see the E04 Introduction):
qpconvex2_sparse_solve()
alternative:
qpconvex1_sparse_solve()
interior point method (IPM) for (possibly nonconvex) QP problems:
handle_solve_ipopt()
Second-order Cone Programming (SOCP)
dense or sparse
interior point method:
handle_solve_socp_ipm()
Semidefinite programming (SDP)
generalized augmented Lagrangian method for SDP and SDP with bilinear matrix inequalities (BMI-SDP):
handle_solve_pennon()
Nonlinear programming (NLP)
dense
active-set sequential quadratic programming (SQP)
direct communication
recommended (see the E04 Introduction):
nlp1_solve()
alternative:
nlp2_solve()
reverse communication:
nlp1_rcomm()
sparse
active-set sequential quadratic programming (SQP):
handle_solve_ssqp()
interior point method (IPM):
handle_solve_ipopt()
active-set sequential quadratic programming (SQP)
alternative:
nlp2_sparse_solve()
alternative:
nlp1_sparse_solve()
Nonlinear programming (NLP) – derivative-free optimization (DFO)
model-based method for bound-constrained optimization:
bounds_bobyqa_func()
Nelder–Mead simplex method for unconstrained optimization:
uncon_simplex()
Nonlinear programming (NLP) – special cases
unidimensional optimization (one-dimensional) with bound constraints
method based on quadratic interpolation, no derivatives:
one_var_func()
method based on cubic interpolation:
one_var_deriv()
unconstrained
preconditioned conjugate gradient method:
uncon_conjgrd_comp()
bound-constrained
first order active-set method (nonlinear conjugate gradient):
handle_solve_bounds_foas()
quasi-Newton algorithm, no derivatives:
bounds_quasi_func_easy()
quasi-Newton algorithm, first derivatives:
bounds_quasi_deriv_easy()
modified Newton algorithm, first derivatives:
bounds_mod_deriv_comp()
modified Newton algorithm, first derivatives, easy-to-use:
bounds_mod_deriv_easy()
modified Newton algorithm, first and second derivatives:
bounds_mod_deriv2_comp()
modified Newton algorithm, first and second derivatives, easy-to-use:
bounds_mod_deriv2_easy()
Linear least squares, linear regression, data fitting
constrained
bound-constrained least squares problem:
bnd_lin_lsq()
linearly-constrained active-set method:
lsq_lincon_solve()
Data fitting
general loss functions (for sum of squares, see nonlinear least squares):
handle_solve_nldf()
Nonlinear least squares, data fitting
unconstrained
combined Gauss–Newton and modified Newton algorithm
no derivatives:
lsq_uncon_mod_func_comp()
no derivatives, easy-to-use:
lsq_uncon_mod_func_easy()
first derivatives:
lsq_uncon_mod_deriv_comp()
first derivatives, easy-to-use:
lsq_uncon_mod_deriv_easy()
first and second derivatives:
lsq_uncon_mod_deriv2_comp()
first and second derivatives, easy-to-use:
lsq_uncon_mod_deriv2_easy()
combined Gauss–Newton and quasi-Newton algorithm
first derivatives:
lsq_uncon_quasi_deriv_comp()
first derivatives, easy-to-use:
lsq_uncon_quasi_deriv_easy()
covariance matrix for nonlinear least squares problem (unconstrained):
lsq_uncon_covariance()
bound constrained
model-based derivative-free algorithm
direct communication:
handle_solve_dfls()
reverse communication:
handle_solve_dfls_rcomm()
trust region algorithm
first derivatives, optionally second derivatives:
handle_solve_bxnl()
generic, including nonlinearly constrained
nonlinear constraints active-set sequential quadratic programming (SQP):
lsq_gencon_deriv()
NAG optimization modelling suite
initialization of a handle for the suite
initialization as an empty problem:
handle_init()
read a problem from a file to a handle:
handle_read_file()
problem definition
define a linear objective function:
handle_set_linobj()
define a linear or a quadratic objective function:
handle_set_quadobj()
define nonlinear residual functions:
handle_set_nlnls()
define a nonlinear objective function:
handle_set_nlnobj()
define a second-order cone:
handle_set_group()
define bounds of variables:
handle_set_simplebounds()
define a block of linear constraints:
handle_set_linconstr()
define a block of nonlinear constraints:
handle_set_nlnconstr()
define a structure of Hessian of the objective, constraints or the Lagrangian:
handle_set_nlnhess()
add one or more linear matrix inequality constraints:
handle_set_linmatineq()
define bilinear matrix terms:
handle_set_quadmatineq()
factor of quadratic coefficient matrix:
handle_set_qconstr_fac()
full quadratic coefficient matrix:
handle_set_qconstr()
set variable properties (e.g., integrality):
handle_set_property()
problem editing
define new variables:
handle_add_vars()
disable (temporarily remove) components of the model:
handle_disable()
enable (bring back) previously disabled components of the model:
handle_enable()
modify a single coefficient in a linear constraint:
handle_set_linconstr_coeff()
modify a single coefficient in the linear objective function:
handle_set_linobj_coeff()
modify bounds of an existing constraint or variable:
handle_set_bound()
solvers
interior point method (IPM) for linear programming (LP):
handle_solve_lp_ipm()
first order active-set method (nonlinear conjugate gradient):
handle_solve_bounds_foas()
active-set sequential quadratic programming method (SQP) for nonlinear programming (NLP):
handle_solve_ssqp()
interior point method (IPM) for nonlinear programming (NLP):
handle_solve_ipopt()
generalized augmented Lagrangian method for SDP and SDP with bilinear matrix inequalities (BMI-SDP):
handle_solve_pennon()
interior point method (IPM) for Second-order Cone programming (SOCP):
handle_solve_socp_ipm()
constrained nonlinear data fitting (NLDF):
handle_solve_nldf()
derivative-free optimisation (DFO) for nonlinear least squares problems
direct communication:
handle_solve_dfls()
reverse communication:
handle_solve_dfls_rcomm()
trust region optimisation for nonlinear least squares problems (BXNL):
handle_solve_bxnl()
model-based method for bound-constrained optimization
direct communication:
handle_solve_dfno()
reverse communication:
handle_solve_dfno_rcomm()
simplex for linear programming (LP):
handle_solve_lp_simplex()
deallocation
destroy the problem handle:
handle_free()
service routines
print information about a problem handle:
handle_print()
set/get information in a problem handle:
handle_set_get_real()
set/get integer information in a problem handle:
handle_set_get_integer()
supply option values from a character string:
handle_opt_set()
get the setting of option:
handle_opt_get()
supply option values from external file:
handle_opt_set_file()
Service functions
input and output (I/O)
read MPS data file defining LP, QP, MILP or MIQP problem:
miqp_mps_read()
write MPS data file defining LP, QP, MILP or MIQP problem:
miqp_mps_write()
read sparse SPDA data files for linear SDP problems:
sdp_read_sdpa()
read MPS data file defining LP or QP problem (deprecated):
qpconvex1_sparse_mps()
read a problem from a file to a handle:
handle_read_file()
derivative check and approximation
check user’s function for calculating first derivatives of function:
check_deriv()
check user’s function for calculating second derivatives of function:
check_deriv2()
check user’s function for calculating Jacobian of first derivatives:
lsq_check_deriv()
check user’s function for calculating Hessian of a sum of squares:
lsq_check_hessian()
estimate (using numerical differentiation) gradient and/or Hessian of a function:
estimate_deriv()
determine the pattern of nonzeros in the Jacobian matrix for
nlp2_sparse_solve()
:nlp2_sparse_jacobian()
covariance matrix for nonlinear least squares problem (unconstrained):
lsq_uncon_covariance()
option setting functions
NAG optimization modelling suite
supply option values from a character string:
handle_opt_set()
get the setting of option:
handle_opt_get()
supply option values from external file:
handle_opt_set_file()
supply option values from external file:
uncon_conjgrd_option_file()
supply option values from a character string:
uncon_conjgrd_option_string()
supply option values from external file:
lp_option_file()
supply option values from a character string:
lp_option_string()
supply option values from external file:
lsq_lincon_option_file()
supply option values from a character string:
lsq_lincon_option_string()
supply option values from external file:
qp_dense_option_file()
supply option values from a character string:
qp_dense_option_string()
supply option values from external file:
qpconvex1_sparse_option_file()
supply option values from a character string:
qpconvex1_sparse_option_string()
initialization function:
qpconvex2_sparse_init()
supply option values from external file:
qpconvex2_sparse_option_file()
set a single option from a character string:
qpconvex2_sparse_option_string()
set a single option from an integer argument:
qpconvex2_sparse_option_integer_set()
set a single option from a real argument:
qpconvex2_sparse_option_double_set()
get the setting of an integer valued option:
qpconvex2_sparse_option_integer_get()
get the setting of a real valued option:
qpconvex2_sparse_option_double_get()
initialization function for
nlp1_solve()
andnlp1_rcomm()
:nlp1_init()
supply option values from external file:
nlp1_option_file()
supply option values from a character string:
nlp1_option_string()
supply option values from external file:
nlp1_sparse_option_file()
supply option values from a character string:
nlp1_sparse_option_string()
supply option values from external file:
lsq_gencon_deriv_option_file()
supply option values from a character string:
lsq_gencon_deriv_option_string()
initialization function:
nlp2_sparse_init()
supply option values from external file:
nlp2_sparse_option_file()
set a single option from a character string:
nlp2_sparse_option_string()
set a single option from an integer argument:
nlp2_sparse_option_integer_set()
set a single option from a real argument:
nlp2_sparse_option_double_set()
get the setting of an integer valued option:
nlp2_sparse_option_integer_get()
get the setting of a real valued option:
nlp2_sparse_option_double_get()
initialization function:
nlp2_init()
supply option values from external file:
nlp2_option_file()
set a single option from a character string:
nlp2_option_string()
set a single option from an integer argument:
nlp2_option_integer_set()
set a single option from a real argument:
nlp2_option_double_set()
get the setting of an integer valued option:
nlp2_option_integer_get()
get the setting of a real valued option:
nlp2_option_double_get()
For full information please refer to the NAG Library document
https://support.nag.com/numeric/nl/nagdoc_30.2/flhtml/e04/e04intro.html
Examples¶
- naginterfaces.library.examples.opt.handle_add_vars_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_add_vars()
NAG Optimization Modelling suite: adding variables to an optimization model.
This example program demonstrates how to edit an LP model using the NAG Optimization Modeling Suite (NOMS) functionality.
>>> main() naginterfaces.library.opt.handle_add_vars Python Example Results Solve the first LP E04MT, Interior point method for LP problems Status: converged, an optimal solution found Final primal objective value 8.500000E+02 Final dual objective value 8.500000E+02 Primal variables: idx Lower bound Value Upper bound 1 0.00000E+00 2.00000E+02 inf 2 0.00000E+00 1.00000E+02 1.00000E+02 The new variable has been added, solve the handle again E04MT, Interior point method for LP problems Status: converged, an optimal solution found Final primal objective value 9.000000E+02 Final dual objective value 9.000000E+02 Primal variables: idx Lower bound Value Upper bound 1 0.00000E+00 5.00000E+01 inf 2 0.00000E+00 1.00000E+02 1.00000E+02 3 0.00000E+00 5.00000E+01 5.00000E+01 The new constraint has been added, solve the handle again E04MT, Interior point method for LP problems Status: converged, an optimal solution found Final primal objective value 8.750000E+02 Final dual objective value 8.750000E+02 Primal variables: idx Lower bound Value Upper bound 1 0.00000E+00 1.50000E+02 inf 2 0.00000E+00 5.00000E+01 1.00000E+02 3 0.00000E+00 5.00000E+01 5.00000E+01
- naginterfaces.library.examples.opt.handle_disable_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_disable()
NAG Optimization Modelling suite: disabling a residual from a nonlinear least-square problem.
>>> main() naginterfaces.library.opt.handle_disable Python Example Results First solve the problem with the outliers -------------------------------------------------------- E04GG, Nonlinear least squares method for bound-constrained problems Status: converged, an optimal solution was found Value of the objective 1.05037E+00 Norm of gradient 8.78014E-06 Norm of scaled gradient 6.05781E-06 Norm of step 1.47886E-01 Primal variables: idx Lower bound Value Upper bound 1 -inf 3.61301E-01 inf 2 -inf 9.10227E-01 inf 3 -inf 3.42138E-03 inf 4 -inf -6.08965E+00 inf 5 -inf 6.24881E-04 inf Now remove the outlier residuals from the problem handle E04GG, Nonlinear least squares method for bound-constrained problems Status: converged, an optimal solution was found Value of the objective 5.96811E-02 Norm of gradient 1.19914E-06 Norm of scaled gradient 3.47087E-06 Norm of step 3.49256E-06 Primal variables: idx Lower bound Value Upper bound 1 -inf 3.53888E-01 inf 2 -inf 1.06575E+00 inf 3 -inf 1.91383E-03 inf 4 -inf 2.17299E-01 inf 5 -inf 5.17660E+00 inf -------------------------------------------------------- Assuming the outliers points are measured again we can enable the residuals and adjust the values -------------------------------------------------------- E04GG, Nonlinear least squares method for bound-constrained problems Status: converged, an optimal solution was found Value of the objective 6.51802E-02 Norm of gradient 2.57338E-07 Norm of scaled gradient 7.12740E-07 Norm of step 1.56251E-05 Primal variables: idx Lower bound Value Upper bound 1 3.00000E-01 3.00000E-01 3.00000E-01 2 -inf 1.06039E+00 inf 3 -inf 2.11765E-02 inf 4 -inf 2.11749E-01 inf 5 -inf 5.16415E+00 inf
- naginterfaces.library.examples.opt.handle_solve_bounds_foas_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_bounds_foas()
.Large-scale first order active set bound-constrained nonlinear programming.
Demonstrates using the
FileObjManager
class.>>> main() naginterfaces.library.opt.handle_solve_bounds_foas Python Example Results. Minimizing a bound-constrained Rosenbrock problem. E04KF, First order method for bound-constrained problems Begin of Options ... End of Options Status: converged, an optimal solution was found Value of the objective 4.00000E-02 ...
- naginterfaces.library.examples.opt.handle_solve_dfls_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_dfls()
.Derivative-free solver for a nonlinear least squares objective function.
Demonstrates handling optional algorithmic parameters in the NAG optimization modelling suite.
>>> main() naginterfaces.library.opt.handle_solve_dfls Python Example Results. Minimizing the Kowalik and Osborne function. ... Status: Converged, small trust region size ... Value of the objective 4.02423E-04 Number of objective function evaluations 27 Number of steps 10 ...
- naginterfaces.library.examples.opt.handle_solve_dfno_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_dfno()
.Derivative-free solver for nonlinear problems.
Demonstrates terminating early in a callback function and how to silence the subsequent
NagCallbackTerminateWarning
.>>> main() naginterfaces.library.opt.handle_solve_dfno Python Example Results. Minimizing a bound-constrained nonlinear problem. ... Terminating early because rho is small enough. Function value at lowest point found is 2.43383. The corresponding x is (1.0000, -0.0858, 0.4097, 1.0000).
- naginterfaces.library.examples.opt.handle_solve_ipopt_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_ipopt()
.Interior-point solver for sparse NLP.
>>> main() naginterfaces.library.opt.handle_solve_ipopt Python Example Results. Solving a problem based on Hock and Schittkowski Problem 73. Solving with a nonlinear objective. At the solution the objective function is 2.9894378e+01.
- naginterfaces.library.examples.opt.handle_solve_lp_ipm_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_lp_ipm()
.Large-scale linear programming based on an interior point method.
>>> main() naginterfaces.library.opt.handle_solve_lp_ipm Python Example Results. Solve a small LP problem. E04MT, Interior point method for LP problems Status: converged, an optimal solution found Final primal objective value 2.359648E-02 Final dual objective value 2.359648E-02
- naginterfaces.library.examples.opt.handle_solve_lp_simplex_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_lp_simplex()
.Large-scale linear programming based on a simplex method.
>>> main() naginterfaces.library.opt.handle_solve_lp_simplex Python Example Results. Solve a small LP problem. E04MK, Simplex method for LP problems Status: converged, an optimal solution found Final objective value 2.359648E-02
- naginterfaces.library.examples.opt.handle_solve_nldf_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_nldf()
.General nonlinear data-fitting with constraints.
Solve a nonlinear regression problem using both least squares and robust regression.
>>> main() naginterfaces.library.opt.handle_solve_nldf Python Example Results. First solve the problem using least squares loss function E04GN, Nonlinear Data-Fitting Status: converged, an optimal solution found Final objective value 4.590715E+01 Primal variables: idx Lower bound Value Upper bound 1 -1.00000E+00 9.43732E-02 inf 2 0.00000E+00 7.74046E-01 1.00000E+00 --------------------------------------------------------- Now solve the problem using SmoothL1 loss function E04GN, Nonlinear Data-Fitting Status: converged, an optimal solution found Final objective value 1.294635E+01 Primal variables: idx Lower bound Value Upper bound 1 -1.00000E+00 9.69201E-02 inf 2 0.00000E+00 7.95110E-01 1.00000E+00
- naginterfaces.library.examples.opt.handle_solve_pennon_bmi_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_pennon()
, with bilinear matrix inequality constraints.Semidefinite programming using Pennon.
>>> main() naginterfaces.library.opt.handle_solve_pennon Python Example Results. BMI-SDP. Final objective value is 2.000000 at the point: (1.000e+00, 1.029e-15, 1.000e+00, 1.314e+03, 1.311e+03).
- naginterfaces.library.examples.opt.handle_solve_pennon_lmi_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_pennon()
, with linear matrix inequality constraints.Semidefinite programming using Pennon.
>>> main() naginterfaces.library.opt.handle_solve_pennon Python Example Results. Find the Lovasz theta number for a Petersen Graph. Lovasz theta number of the given graph is 4.00.
- naginterfaces.library.examples.opt.handle_solve_socp_ipm_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_socp_ipm()
.Second order cone programming based on an interior point method.
>>> main() naginterfaces.library.opt.handle_solve_socp_ipm Python Example Results. Solve a small SOCP problem. E04PT, Interior point method for SOCP problems Status: converged, an optimal solution found Final primal objective value -1.951817E+01 Final dual objective value -1.951817E+01
- naginterfaces.library.examples.opt.handle_solve_ssqp_ex.main()[source]¶
Example for
naginterfaces.library.opt.handle_solve_ssqp()
.SQP solver for sparse NLP.
NLP example: Quadratic objective, linear constraint and two nonlinear constraints. For illustrative purposes, the quadratic objective is coded as a nonlinear function to show the usage of objfun, objgrd user call-backs.
>>> main() naginterfaces.library.opt.handle_solve_ssqp Python Example Results. At the solution the objective function is 1.900124e+00.
- naginterfaces.library.examples.opt.lsq_gencon_deriv_ex.main()[source]¶
Example for
naginterfaces.library.opt.lsq_gencon_deriv()
.Minimum of a sum of squares, nonlinear constraints, dense, active-set SQP method, using function values and optionally first derivatives.
>>> main() naginterfaces.library.opt.lsq_gencon_deriv Python Example Results. Minimizing Problem 57 from Hock and Schittkowski's 'Test Examples for Nonlinear Scripting Codes'. Final function value is 1.42298348615e-02.
- naginterfaces.library.examples.opt.lsq_uncon_mod_func_comp_ex.main()[source]¶
Example for
naginterfaces.library.opt.lsq_uncon_mod_func_comp()
.Find an unconstrained minimum of a sum of squares of m nonlinear functions in n variables (m at least n). No derivatives are required.
>>> main() naginterfaces.library.opt.lsq_uncon_mod_func_comp Python Example Results. Find an unconstrained minimum of a sum of squares. Best fit model parameters are: x_0 = 0.082 x_1 = 1.133 x_2 = 2.344 Residuals for observed data: -0.0059 -0.0003 0.0003 0.0065 -0.0008 -0.0013 -0.0045 -0.0200 0.0822 -0.0182 -0.0148 -0.0147 -0.0112 -0.0042 0.0068 Sum of squares of residuals: 0.0082
- naginterfaces.library.examples.opt.nlp1_rcomm_ex.main()[source]¶
Example for
naginterfaces.library.opt.nlp1_rcomm()
.Dense NLP.
>>> main() naginterfaces.library.opt.nlp1_rcomm Python Example Results. Solve Hock and Schittkowski Problem 71. Final objective value is 1.7014017e+01
- naginterfaces.library.examples.opt.nlp1_solve_ex.main()[source]¶
Example for
naginterfaces.library.opt.nlp1_solve()
.Dense NLP.
Demonstrates handling optional algorithmic parameters.
>>> main() naginterfaces.library.opt.nlp1_solve Python Example Results. Solve Hock and Schittkowski Problem 71. Final objective value is 1.7014017e+01
- naginterfaces.library.examples.opt.nlp1_sparse_solve_ex.main()[source]¶
Example for
naginterfaces.library.opt.nlp1_sparse_solve()
.Sparse NLP.
>>> main() naginterfaces.library.opt.nlp1_sparse_solve Python Example Results. Solve Hock and Schittkowski Problem 74. Final objective value is 5.1264981e+03
- naginterfaces.library.examples.opt.nlp2_solve_ex.main()[source]¶
Example for
naginterfaces.library.opt.nlp2_solve()
.Dense NLP.
>>> main() naginterfaces.library.opt.nlp2_solve Python Example Results. Solve Hock and Schittkowski Problem 71. Final objective value is 1.7014017e+01
- naginterfaces.library.examples.opt.nlp2_sparse_solve_ex.main()[source]¶
Example for
naginterfaces.library.opt.nlp2_sparse_solve()
.Sparse NLP.
>>> main() naginterfaces.library.opt.nlp2_sparse_solve Python Example Results. Solve Hock and Schittkowski Problem 74. Final objective value is 5.1264981e+03
- naginterfaces.library.examples.opt.qpconvex2_sparse_solve_ex.main()[source]¶
Example for
naginterfaces.library.opt.qpconvex2_sparse_solve()
.Sparse QP/LP.
>>> main() naginterfaces.library.opt.qpconvex2_sparse_solve Python Example Results. Sparse QP/LP. Function value at lowest point found is -1847784.67712. The corresponding x is: (0.00, 349.40, 648.85, 172.85, 407.52, 271.36, 150.02).
- naginterfaces.library.examples.opt.uncon_simplex_ex.main()[source]¶
Example for
naginterfaces.library.opt.uncon_simplex()
.Unconstrained minimum, Nelder–Mead simplex algorithm.
>>> main() naginterfaces.library.opt.uncon_simplex Python Example Results. Nelder--Mead simplex algorithm. The final function value is 0.0000 at the point x = (0.5000, -0.9999)