library.pde
Submodule¶
Module Summary¶
Interfaces for the NAG Mark 30.3 pde Chapter.
pde
- Partial Differential Equations
This module is concerned with the numerical solution of partial differential equations.
See Also¶
naginterfaces.library.examples.pde
:This subpackage contains examples for the
pde
module. See also the Examples subsection.
Functionality Index¶
Automatic mesh generation
triangles over a plane domain:
dim2_triangulate()
Black–Scholes equation
analytic:
dim1_blackscholes_closed()
finite difference:
dim1_blackscholes_fd()
Convection-diffusion system(s)
nonlinear
one space dimension
using upwind difference scheme based on Riemann solvers:
dim1_parab_convdiff()
Elliptic equations
discretization on rectangular grid (seven-point two-dimensional molecule):
dim2_ellip_discret()
equations on rectangular grid (seven-point two-dimensional molecule):
dim2_ellip_mgrid()
finite difference equations (five-point two-dimensional molecule):
dim2_ellip_fd()
finite difference equations (seven-point three-dimensional molecule):
dim3_ellip_fd()
Helmholtz’s equation in three dimensions:
dim3_ellip_helmholtz()
Laplace’s equation in two dimensions:
dim2_laplace()
First-order system(s)
nonlinear
one space dimension
using Keller box scheme:
dim1_parab_keller()
PDEs, general system, one space variable, method of lines
parabolic
collocation spatial discretization
coupled DAEs, comprehensive:
dim1_parab_dae_coll()
easy-to-use:
dim1_parab_coll()
finite differences spatial discretization
coupled DAEs, comprehensive:
dim1_parab_dae_fd()
coupled DAEs, remeshing, comprehensive:
dim1_parab_remesh_fd()
easy-to-use:
dim1_parab_fd()
Second order system(s)
nonlinear
two space dimensions
in rectangular domain:
dim2_gen_order2_rectangle()
in rectilinear domain:
dim2_gen_order2_rectilinear()
Utility function
average values for
dim1_blackscholes_closed()
:dim1_blackscholes_means()
basic SIP for five-point two-dimensional molecule:
dim2_ellip_fd_iter()
basic SIP for seven-point three-dimensional molecule:
dim3_ellip_fd_iter()
exact Riemann solver for Euler equations:
dim1_parab_euler_exact()
HLL Riemann solver for Euler equations:
dim1_parab_euler_hll()
interpolation function for collocation scheme:
dim1_parab_coll_interp()
interpolation function for finite difference
Keller box and upwind scheme:
dim1_parab_fd_interp()
Osher’s Riemann solver for Euler equations:
dim1_parab_euler_osher()
return coordinates of grid points for
dim2_gen_order2_rectilinear()
:dim2_gen_order2_rectilinear_extractgrid()
Roe’s Riemann solver for Euler equations:
dim1_parab_euler_roe()
For full information please refer to the NAG Library document
https://support.nag.com/numeric/nl/nagdoc_30.3/flhtml/d03/d03intro.html
Examples¶
- naginterfaces.library.examples.pde.dim2_gen_order2_rectangle_ex.main()[source]¶
Example for
naginterfaces.library.pde.dim2_gen_order2_rectangle()
.General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region.
>>> main() naginterfaces.library.pde.dim2_gen_order2_rectangle Python Example Results. Solve a predator-prey problem. Solution at every 2nd grid point in level 3 at time 0.0250: x y approx c1 approx c2 ... 1.000e+00 1.000e+00 1.132e+02 1.132e+06