library.univar
Submodule¶
Module Summary¶
Interfaces for the NAG Mark 30.2 univar Chapter.
univar
- Univariate Estimation
This module deals with the estimation of unknown parameters of a univariate distribution. It includes both point and interval estimation using maximum likelihood and robust methods.
See Also¶
naginterfaces.library.examples.univar
:This subpackage contains examples for the
univar
module. See also the Examples subsection.
Functionality Index¶
2 sample -test: ttest_2normal()
Confidence intervals for parameters
binomial distribution:
ci_binomial()
Poisson distribution:
ci_poisson()
Maximum likelihood estimation of parameters
Normal distribution, grouped and/or censored data:
estim_normal()
Weibull distribution:
estim_weibull()
Outlier detection
Peirce
raw data or single variance supplied:
outlier_peirce_1var()
two variances supplied:
outlier_peirce_2var()
Parameter estimates
generalized Pareto distribution:
estim_genpareto()
Robust estimation
confidence intervals
one sample:
robust_1var_ci()
two samples:
robust_2var_ci()
median, median absolute deviation and robust standard deviation:
robust_1var_median()
-estimates for location and scale parameters
standard weight functions:
robust_1var_mestim()
trimmed and winsorized means and estimates of their variance:
robust_1var_trimmed()
user-defined weight functions:
robust_1var_mestim_wgt()
For full information please refer to the NAG Library document
https://support.nag.com/numeric/nl/nagdoc_30.2/flhtml/g07/g07intro.html
Examples¶
- naginterfaces.library.examples.univar.estim_weibull_ex.main()[source]¶
Example for
naginterfaces.library.univar.estim_weibull()
.Maximum likelihood estimates for parameters of the Weibull distribution.
>>> main() naginterfaces.library.univar.estim_weibull Python Example Results. Maximum likelihood estimates for parameters of the Weibull distribution. beta^ = -2.1073, standard error = 0.4627 gamma^ = 2.7870, standard error = 0.4273