library.eigen
Submodule¶
Module Summary¶
Interfaces for the NAG Mark 30.2 eigen Chapter.
eigen
- Eigenvalues and Eigenvectors
This module provides functions for various types of matrix eigenvalue problem:
standard eigenvalue problems (finding eigenvalues and eigenvectors of a square matrix );
singular value problems (finding singular values and singular vectors of a rectangular matrix );
generalized eigenvalue problems (finding eigenvalues and eigenvectors of a matrix pencil ).
quadratic eigenvalue problems (finding eigenvalues and eigenvectors of the quadratic ).
Functions are provided for both real and complex data.
The majority of functions for these problems can be found in submodule lapackeig
which contains software derived from LAPACK (see Anderson et al. (1999)).
However, you should read the F02 Introduction before turning to submodule lapackeig
, especially if you are a new user. Submodule sparseig
contains functions for large sparse eigenvalue problems, although one such function is also available in this module.
Submodule eigen
and submodule lapackeig
contain Black Box (or Driver) functions that enable many problems to be solved by a call to a single function, and the decision trees in Decision Trees direct you to the most appropriate functions in submodule eigen
and submodule lapackeig
.
The submodule eigen
functions call functions in submodule lapacklin
and submodule lapackeig
wherever possible to perform the computations, and there are pointers in Decision Trees to the relevant decision trees in submodule lapackeig
.
Functionality Index¶
Black Box functions
complex eigenproblem
selected eigenvalues and eigenvectors:
complex_gen_eigsys()
complex quadratic eigenproblem
all eigenvalues and optionally eigenvectors, backward
errors and eigenvalue condition numbers:
complex_gen_quad()
complex upper triangular matrix
singular values and, optionally, left and/or right singular vectors:
complex_triang_svd()
generalized real sparse symmetric-definite eigenproblem
selected eigenvalues and eigenvectors:
real_symm_sparse_eigsys()
real eigenproblem
selected eigenvalues and eigenvectors:
real_gen_eigsys()
real quadratic eigenproblem
all eigenvalues and optionally eigenvectors, backward
errors and eigenvalue condition numbers:
real_gen_quad()
real sparse eigenproblem
selected eigenvalues and eigenvectors:
real_gen_sparse_arnoldi()
real sparse symmetric matrix
driver
selected eigenvalues and eigenvectors:
real_symm_sparse_arnoldi()
selected eigenvalues and eigenvectors:
real_symm_sparse_eigsys()
real upper triangular matrix
singular values and, optionally, left and/or right singular vectors:
real_triang_svd()
General Purpose functions (see also submodule sparseig
)
real matrix, leading terms SVD:
real_gen_partialsvd()
For full information please refer to the NAG Library document
https://support.nag.com/numeric/nl/nagdoc_30.2/flhtml/f02/f02intro.html