library.mip
Submodule¶
Module Summary¶
Interfaces for the NAG Mark 30.1 mip Chapter.
mip
- Operations Research
This module provides functions to solve certain integer programming, transportation and shortest path problems. Additionally ‘best subset’ functions are included.
See Also¶
naginterfaces.library.examples.mip
:This subpackage contains examples for the
mip
module. See also the Examples subsection.
Functionality Index¶
Mixed integer linear programming (MILP)
Mixed integer quadratic programming (MIQP)
Mixed integer nonlinear programming (MINLP)
dense
mixed integer sequential quadratic programming (MISQP):
sqp()
Operations Research (OR)
feature selection
best subset of given size
direct communication:
best_subset_given_size()
reverse communication:
best_subset_given_size_revcomm()
shortest path through directed or undirected network:
shortestpath()
transportation problem:
transportation()
travelling salesman problem, simulated annealing:
tsp_simann()
Service functions
input and output (I/O)
print solution of a dense MILP problem:
ilp_print()
read MILP problem from MPS file and solve it by branch and bound:
ilp_mpsx()
read MPS file defining dense MILP problem:
ilp_mpsx_convert()
option setting functions
supply option values from a character string:
iqp_dense_optstr()
supply option values from external file:
iqp_dense_optfile()
supply option values from a character string:
iqp_sparse_optstr()
supply option values from external file:
iqp_sparse_optfile()
miscellaneous
extract further information on the solution obtained from
ilp_dense()
:ilp_info()
For full information please refer to the NAG Library document
https://support.nag.com/numeric/nl/nagdoc_30.1/flhtml/h/hintro.html
Examples¶
- naginterfaces.library.examples.mip.handle_solve_milp_ex.main()[source]¶
Example for
naginterfaces.library.mip.handle_solve_milp()
.Large-scale mixed integer linear programming.
>>> main() naginterfaces.library.mip.handle_solve_milp Python Example Results. Solve a small MILP problem. H02BK, Solver for MILP problems Status: converged, an optimal solution found Final primal objective value 1.390000E+01 Final dual objective bound 1.390000E+01
- naginterfaces.library.examples.mip.ilp_dense_ex.main()[source]¶
Example for
naginterfaces.library.mip.ilp_dense()
.Dense integer LP.
>>> main() naginterfaces.library.mip.ilp_dense Python Example Results. Solve an ILP problem. Final objective value is -1.4000000e+01
- naginterfaces.library.examples.mip.sqp_ex.main()[source]¶
Example for
naginterfaces.library.mip.sqp()
.Nonlinear programming with some integer constraints.
>>> main() naginterfaces.library.mip.sqp Python Example Results. Solve a portfolio selection problem. Final objective value is 2.9250000e+00