# `library.zeros` Submodule¶

## Module Summary¶

Interfaces for the NAG Mark 30.1 zeros Chapter.

`zeros` - Zeros of Polynomials

This module is concerned with computing the zeros of a polynomial with real or complex coefficients.

`naginterfaces.library.examples.zeros` :

This subpackage contains examples for the `zeros` module. See also the Examples subsection.

## Functionality Index¶

All zeros of cubic

complex coefficients: `cubic_complex()`

real coefficients: `cubic_real()`

All zeros of polynomial

complex coefficients

fast modified Laguerre’s method: `poly_complex_fpml()`

modified Laguerre’s method: `poly_complex()`

real coefficients

fast modified Laguerre’s method: `poly_real_fpml()`

modified Laguerre’s method: `poly_real()`

complex coefficients: `quadratic_complex()`

real coefficients: `quadratic_real()`

All zeros of quartic

complex coefficients: `quartic_complex()`

real coefficients: `quartic_real()`

For full information please refer to the NAG Library document

https://support.nag.com/numeric/nl/nagdoc_30.1/flhtml/c02/c02intro.html

## Examples¶

naginterfaces.library.examples.zeros.poly_complex_fpml_ex.main()[source]

Find all the roots of a complex polynomial equation.

```>>> main()
naginterfaces.library.zeros.poly_complex_fpml Python Example Results.
Roots of a complex polynomial equation.
Computed roots:
0.007 +   0.007j
-0.007 +  -0.007j
-24.328 +  -4.855j
14.653 + -16.569j
5.249 +  22.736j
```