library.zeros
Submodule¶
Module Summary¶
Interfaces for the NAG Mark 30.3 zeros Chapter.
zeros
- Zeros of Polynomials
This module is concerned with computing the zeros of a polynomial with real or complex coefficients.
See Also¶
naginterfaces.library.examples.zeros
:This subpackage contains examples for the
zeros
module. See also the Examples subsection.
Functionality Index¶
All zeros of cubic
complex coefficients:
cubic_complex()
real coefficients:
cubic_real()
All zeros of polynomial
complex coefficients
fast modified Laguerre’s method:
poly_complex_fpml()
modified Laguerre’s method:
poly_complex()
real coefficients
fast modified Laguerre’s method:
poly_real_fpml()
modified Laguerre’s method:
poly_real()
All zeros of quadratic
complex coefficients:
quadratic_complex()
real coefficients:
quadratic_real()
All zeros of quartic
complex coefficients:
quartic_complex()
real coefficients:
quartic_real()
For full information please refer to the NAG Library document
https://support.nag.com/numeric/nl/nagdoc_30.3/flhtml/c02/c02intro.html
Examples¶
- naginterfaces.library.examples.zeros.poly_complex_fpml_ex.main()[source]¶
Example for
naginterfaces.library.zeros.poly_complex_fpml()
.Find all the roots of a complex polynomial equation.
>>> main() naginterfaces.library.zeros.poly_complex_fpml Python Example Results. Roots of a complex polynomial equation. Computed roots: 0.007 + 0.007j -0.007 + -0.007j -24.328 + -4.855j 14.653 + -16.569j 5.249 + 22.736j