naginterfaces.library.specfun.ellipint_legendre_3¶
- naginterfaces.library.specfun.ellipint_legendre_3(dn, phi, dm)[source]¶
ellipint_legendre_3
returns a value of the classical (Legendre) form of the incomplete elliptic integral of the third kind.For full information please refer to the NAG Library document for s21bg
https://support.nag.com/numeric/nl/nagdoc_30.2/flhtml/s/s21bgf.html
- Parameters
- dnfloat
The arguments , and of the function.
- phifloat
The arguments , and of the function.
- dmfloat
The arguments , and of the function.
- Returns
- pfloat
The value of the classical (Legendre) form of the incomplete elliptic integral of the third kind.
- Raises
- NagValueError
- (errno )
On entry, .
Constraint: .
- (errno )
On entry, and ; the integral is undefined.
Constraint: .
- Warns
- NagAlgorithmicWarning
- (errno )
On entry, and ; the integral is infinite.
- (errno )
On entry, and ; the integral is infinite.
Constraint: .
- Notes
ellipint_legendre_3
calculates an approximation to the integralwhere , , and may not both equal one, and .
The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and Carlson (1988)). The relevant identity is
where , , , is the Carlson symmetrised incomplete elliptic integral of the first kind (see
ellipint_symm_1()
) and is the Carlson symmetrised incomplete elliptic integral of the third kind (seeellipint_symm_3()
).
- References
Abramowitz, M and Stegun, I A, 1972, Handbook of Mathematical Functions, (3rd Edition), Dover Publications
Carlson, B C, 1979, Computing elliptic integrals by duplication, Numerische Mathematik (33), 1–16
Carlson, B C, 1988, A table of elliptic integrals of the third kind, Math. Comput. (51), 267–280