naginterfaces.library.specfun.ellipint_legendre_1¶
- naginterfaces.library.specfun.ellipint_legendre_1(phi, dm)[source]¶
ellipint_legendre_1
returns a value of the classical (Legendre) form of the incomplete elliptic integral of the first kind.For full information please refer to the NAG Library document for s21be
https://support.nag.com/numeric/nl/nagdoc_30.1/flhtml/s/s21bef.html
- Parameters
- phifloat
The arguments and of the function.
- dmfloat
The arguments and of the function.
- Returns
- ffloat
The value of the classical (Legendre) form of the incomplete elliptic integral of the first kind.
- Raises
- NagValueError
- (errno )
On entry, .
Constraint: .
On failure, the function returns zero.
- (errno )
On entry, and ; the integral is undefined.
Constraint: .
On failure, the function returns zero.
- Warns
- NagAlgorithmicWarning
- (errno )
On entry, and ; the integral is infinite.
On failure, the function returns the largest machine number (see
machine.real_largest
).
- Notes
ellipint_legendre_1
calculates an approximation to the integralwhere , and and may not both equal one.
The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and Carlson (1988)). The relevant identity is
where , and is the Carlson symmetrised incomplete elliptic integral of the first kind (see
ellipint_symm_1()
).
- References
Abramowitz, M and Stegun, I A, 1972, Handbook of Mathematical Functions, (3rd Edition), Dover Publications
Carlson, B C, 1979, Computing elliptic integrals by duplication, Numerische Mathematik (33), 1–16
Carlson, B C, 1988, A table of elliptic integrals of the third kind, Math. Comput. (51), 267–280