naginterfaces.library.specfun.ellipint_complete_1¶
- naginterfaces.library.specfun.ellipint_complete_1(dm)[source]¶
ellipint_complete_1
returns a value of the classical (Legendre) form of the complete elliptic integral of the first kind.For full information please refer to the NAG Library document for s21bh
https://support.nag.com/numeric/nl/nagdoc_30.2/flhtml/s/s21bhf.html
- Parameters
- dmfloat
The argument of the function.
- Returns
- kfloat
The value of the classical (Legendre) form of the complete elliptic integral of the first kind.
- Raises
- NagValueError
- (errno )
On entry, ; the integral is undefined.
Constraint: .
On failure, the function returns zero.
- Warns
- NagAlgorithmicWarning
- (errno )
On entry, ; the integral is infinite.
On failure, the function returns the largest machine number (see
machine.real_largest
).
- Notes
ellipint_complete_1
calculates an approximation to the integralwhere .
The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and Carlson (1988)). The relevant identity is
where is the Carlson symmetrised incomplete elliptic integral of the first kind (see
ellipint_symm_1()
).
- References
NIST Digital Library of Mathematical Functions
Carlson, B C, 1979, Computing elliptic integrals by duplication, Numerische Mathematik (33), 1–16
Carlson, B C, 1988, A table of elliptic integrals of the third kind, Math. Comput. (51), 267–280