naginterfaces.library.rand.quasi_init¶
- naginterfaces.library.rand.quasi_init(genid, idim, iskip)[source]¶
quasi_init
initializes a quasi-random generator prior to callingquasi_uniform()
,quasi_normal()
orquasi_lognormal()
.For full information please refer to the NAG Library document for g05yl
https://support.nag.com/numeric/nl/nagdoc_30.3/flhtml/g05/g05ylf.html
- Parameters
- genidint
Must identify the quasi-random generator to use.
Sobol generator.
Sobol (A659) generator.
Niederreiter generator.
Faure generator.
- idimint
The number of dimensions required.
- iskipint
The number of terms of the sequence to skip on initialization for the Sobol and Niederreiter generators. If , is ignored.
- Returns
- commdict, communication object
Communication structure.
- Raises
- NagValueError
- (errno )
On entry, .
Constraint: , , or .
- (errno )
On entry, .
Constraint: .
- (errno )
On entry, or is too large: , maximum value is .
- Notes
quasi_init
selects a quasi-random number generator through the input value of and initializes the [‘iref’] communication array for use by the functionsquasi_uniform()
,quasi_normal()
orquasi_lognormal()
.One of three types of quasi-random generator may be chosen, allowing the low-discrepancy sequences proposed by Sobol, Faure or Niederreiter to be generated.
Two sets of Sobol sequences are supplied; the first, is based on the work of Joe and Kuo (2008). The second, referred to in the documentation as ‘Sobol (A659)’, is based on Algorithm 659 of Bratley and Fox (1988) with the extension to dimensions proposed by Joe and Kuo (2003). Both sets of Sobol sequences should satisfy the so-called Property A, up to dimensions, but the first set should have better two-dimensional projections than those produced using Algorithm 659.
If a higher number of dimensions are required for the Sobol generators, please use
quasi_init_scrambled()
.
- References
Bratley, P and Fox, B L, 1988, Algorithm 659: implementing Sobol’s quasirandom sequence generator, ACM Trans. Math. Software (14(1)), 88–100
Fox, B L, 1986, Algorithm 647: implementation and relative efficiency of quasirandom sequence generators, ACM Trans. Math. Software (12(4)), 362–376
Joe, S and Kuo, F Y, 2003, Remark on Algorithm 659: implementing Sobol’s quasirandom sequence generator, ACM Trans. Math. Software (TOMS) (29), 49–57
Joe, S and Kuo, F Y, 2008, Constructing Sobol sequences with better two-dimensional projections, SIAM J. Sci. Comput. (30), 2635–2654