naginterfaces.library.rand.dist_triangular¶
- naginterfaces.library.rand.dist_triangular(n, xmin, xmed, xmax, statecomm)[source]¶
dist_triangular
generates a vector of pseudorandom numbers from a triangular distribution with parameters , and .For full information please refer to the NAG Library document for g05sp
https://support.nag.com/numeric/nl/nagdoc_30.2/flhtml/g05/g05spf.html
- Parameters
- nint
, the number of pseudorandom numbers to be generated.
- xminfloat
The end point of the triangular distribution.
- xmedfloat
The median of the distribution (also the location of the vertex of the triangular distribution at which the PDF reaches a maximum).
- xmaxfloat
The end point of the triangular distribution.
- statecommdict, RNG communication object, modified in place
RNG communication structure.
This argument must have been initialized by a prior call to
init_repeat()
orinit_nonrepeat()
.
- Returns
- xfloat, ndarray, shape
The pseudorandom numbers from the specified triangular distribution.
- Raises
- NagValueError
- (errno )
On entry, .
Constraint: .
- (errno )
On entry, and .
Constraint: .
- (errno )
On entry, and .
Constraint: .
- (errno )
On entry, [‘state’] vector has been corrupted or not initialized.
- Notes
The triangular distribution has a PDF (probability density function) that is triangular in profile. The base of the triangle ranges from to and the PDF has a maximum value of at . If then with probability 1; otherwise the triangular distribution has PDF:
One of the initialization functions
init_repeat()
(for a repeatable sequence if computed sequentially) orinit_nonrepeat()
(for a non-repeatable sequence) must be called prior to the first call todist_triangular
.
- References
Knuth, D E, 1981, The Art of Computer Programming (Volume 2), (2nd Edition), Addison–Wesley