F07 (lapacklin) Chapter Introduction – a description of the Chapter and an overview of the algorithms available
Routine Name |
Mark of Introduction |
Purpose |
f07aaf (dgesv)
Example Text Example Data |
21 | dgesv nagf_lapacklin_dgesv Computes the solution to a real system of linear equations |
f07abf (dgesvx)
Example Text Example Data |
21 | dgesvx nagf_lapacklin_dgesvx Uses the factorization to compute the solution, error-bound and condition estimate for a real system of linear equations |
f07acf (dsgesv)
Example Text Example Data |
22 | dsgesv nagf_lapacklin_dsgesv Computes the solution to a real system of linear equations using mixed precision arithmetic |
f07adf (dgetrf)
Example Text Example Data |
15 | dgetrf nagf_lapacklin_dgetrf factorization of real by matrix |
f07aef (dgetrs)
Example Text Example Data |
15 | dgetrs nagf_lapacklin_dgetrs Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by f07adf (dgetrf) |
f07aff (dgeequ)
Example Text Example Data |
22 | dgeequ nagf_lapacklin_dgeequ Computes row and column scalings intended to equilibrate a general real matrix and reduce its condition number |
f07agf (dgecon)
Example Text Example Data |
15 | dgecon nagf_lapacklin_dgecon Estimate condition number of real matrix, matrix already factorized by f07adf (dgetrf) |
f07ahf (dgerfs)
Example Text Example Data |
15 | dgerfs nagf_lapacklin_dgerfs Refined solution with error bounds of real system of linear equations, multiple right-hand sides |
f07ajf (dgetri)
Example Text Example Data |
15 | dgetri nagf_lapacklin_dgetri Inverse of real matrix, matrix already factorized by f07adf (dgetrf) |
f07anf (zgesv)
Example Text Example Data |
21 | zgesv nagf_lapacklin_zgesv Computes the solution to a complex system of linear equations |
f07apf (zgesvx)
Example Text Example Data |
21 | zgesvx nagf_lapacklin_zgesvx Uses the factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations |
f07aqf (zcgesv)
Example Text Example Data |
22 | zcgesv nagf_lapacklin_zcgesv Computes the solution to a complex system of linear equations using mixed precision arithmetic |
f07arf (zgetrf)
Example Text Example Data |
15 | zgetrf nagf_lapacklin_zgetrf factorization of complex by matrix |
f07asf (zgetrs)
Example Text Example Data |
15 | zgetrs nagf_lapacklin_zgetrs Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by f07arf (zgetrf) |
f07atf (zgeequ)
Example Text Example Data |
22 | zgeequ nagf_lapacklin_zgeequ Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number |
f07auf (zgecon)
Example Text Example Data |
15 | zgecon nagf_lapacklin_zgecon Estimate condition number of complex matrix, matrix already factorized by f07arf (zgetrf) |
f07avf (zgerfs)
Example Text Example Data |
15 | zgerfs nagf_lapacklin_zgerfs Refined solution with error bounds of complex system of linear equations, multiple right-hand sides |
f07awf (zgetri)
Example Text Example Data |
15 | zgetri nagf_lapacklin_zgetri Inverse of complex matrix, matrix already factorized by f07arf (zgetrf) |
f07baf (dgbsv)
Example Text Example Data |
21 | dgbsv nagf_lapacklin_dgbsv Computes the solution to a real banded system of linear equations |
f07bbf (dgbsvx)
Example Text Example Data |
21 | dgbsvx nagf_lapacklin_dgbsvx Uses the factorization to compute the solution, error-bound and condition estimate for a real banded system of linear equations |
f07bdf (dgbtrf)
Example Text Example Data |
15 | dgbtrf nagf_lapacklin_dgbtrf factorization of real by band matrix |
f07bef (dgbtrs)
Example Text Example Data |
15 | dgbtrs nagf_lapacklin_dgbtrs Solution of real band system of linear equations, multiple right-hand sides, matrix already factorized by f07bdf (dgbtrf) |
f07bff (dgbequ)
Example Text Example Data |
22 | dgbequ nagf_lapacklin_dgbequ Computes row and column scalings intended to equilibrate a real banded matrix and reduce its condition number |
f07bgf (dgbcon)
Example Text Example Data |
15 | dgbcon nagf_lapacklin_dgbcon Estimate condition number of real band matrix, matrix already factorized by f07bdf (dgbtrf) |
f07bhf (dgbrfs)
Example Text Example Data |
15 | dgbrfs nagf_lapacklin_dgbrfs Refined solution with error bounds of real band system of linear equations, multiple right-hand sides |
f07bnf (zgbsv)
Example Text Example Data |
21 | zgbsv nagf_lapacklin_zgbsv Computes the solution to a complex banded system of linear equations |
f07bpf (zgbsvx)
Example Text Example Data |
21 | zgbsvx nagf_lapacklin_zgbsvx Uses the factorization to compute the solution, error-bound and condition estimate for a complex banded system of linear equations |
f07brf (zgbtrf)
Example Text Example Data |
15 | zgbtrf nagf_lapacklin_zgbtrf factorization of complex by band matrix |
f07bsf (zgbtrs)
Example Text Example Data |
15 | zgbtrs nagf_lapacklin_zgbtrs Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by f07brf (zgbtrf) |
f07btf (zgbequ)
Example Text Example Data |
22 | zgbequ nagf_lapacklin_zgbequ Computes row and column scalings intended to equilibrate a complex banded matrix and reduce its condition number |
f07buf (zgbcon)
Example Text Example Data |
15 | zgbcon nagf_lapacklin_zgbcon Estimate condition number of complex band matrix, matrix already factorized by f07brf (zgbtrf) |
f07bvf (zgbrfs)
Example Text Example Data |
15 | zgbrfs nagf_lapacklin_zgbrfs Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides |
f07caf (dgtsv)
Example Text Example Data |
21 | dgtsv nagf_lapacklin_dgtsv Computes the solution to a real tridiagonal system of linear equations |
f07cbf (dgtsvx)
Example Text Example Data |
21 | dgtsvx nagf_lapacklin_dgtsvx Uses the factorization to compute the solution, error-bound and condition estimate for a real tridiagonal system of linear equations |
f07cdf (dgttrf)
Example Text Example Data |
22 | dgttrf nagf_lapacklin_dgttrf factorization of real tridiagonal matrix |
f07cef (dgttrs)
Example Text Example Data |
22 | dgttrs nagf_lapacklin_dgttrs Solves a real tridiagonal system of linear equations using the factorization computed by f07cdf (dgttrf) |
f07cgf (dgtcon)
Example Text Example Data |
22 | dgtcon nagf_lapacklin_dgtcon Estimates the reciprocal of the condition number of a real tridiagonal matrix using the factorization computed by f07cdf (dgttrf) |
f07chf (dgtrfs)
Example Text Example Data |
22 | dgtrfs nagf_lapacklin_dgtrfs Refined solution with error bounds of real tridiagonal system of linear equations, multiple right-hand sides |
f07cnf (zgtsv)
Example Text Example Data |
21 | zgtsv nagf_lapacklin_zgtsv Computes the solution to a complex tridiagonal system of linear equations |
f07cpf (zgtsvx)
Example Text Example Data |
21 | zgtsvx nagf_lapacklin_zgtsvx Uses the factorization to compute the solution, error-bound and condition estimate for a complex tridiagonal system of linear equations |
f07crf (zgttrf)
Example Text Example Data |
22 | zgttrf nagf_lapacklin_zgttrf factorization of complex tridiagonal matrix |
f07csf (zgttrs)
Example Text Example Data |
22 | zgttrs nagf_lapacklin_zgttrs Solves a complex tridiagonal system of linear equations using the factorization computed by f07cdf (dgttrf) |
f07cuf (zgtcon)
Example Text Example Data |
22 | zgtcon nagf_lapacklin_zgtcon Estimates the reciprocal of the condition number of a complex tridiagonal matrix using the factorization computed by f07cdf (dgttrf) |
f07cvf (zgtrfs)
Example Text Example Data |
22 | zgtrfs nagf_lapacklin_zgtrfs Refined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides |
f07faf (dposv)
Example Text Example Data |
21 | dposv nagf_lapacklin_dposv Computes the solution to a real symmetric positive definite system of linear equations |
f07fbf (dposvx)
Example Text Example Data |
21 | dposvx nagf_lapacklin_dposvx Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations |
f07fcf (dsposv)
Example Text Example Data |
23 | dsposv nagf_lapacklin_dsposv Computes the solution to a real symmetric positive definite system of linear equations using mixed precision arithmetic |
f07fdf (dpotrf)
Example Text Example Data |
15 | dpotrf nagf_lapacklin_dpotrf Cholesky factorization of real symmetric positive definite matrix |
f07fef (dpotrs)
Example Text Example Data |
15 | dpotrs nagf_lapacklin_dpotrs Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07fdf (dpotrf) |
f07fff (dpoequ)
Example Text Example Data |
22 | dpoequ nagf_lapacklin_dpoequ Computes row and column scalings intended to equilibrate a real symmetric positive definite matrix and reduce its condition number |
f07fgf (dpocon)
Example Text Example Data |
15 | dpocon nagf_lapacklin_dpocon Estimate condition number of real symmetric positive definite matrix, matrix already factorized by f07fdf (dpotrf) |
f07fhf (dporfs)
Example Text Example Data |
15 | dporfs nagf_lapacklin_dporfs Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides |
f07fjf (dpotri)
Example Text Example Data |
15 | dpotri nagf_lapacklin_dpotri Inverse of real symmetric positive definite matrix, matrix already factorized by f07fdf (dpotrf) |
f07fnf (zposv)
Example Text Example Data |
21 | zposv nagf_lapacklin_zposv Computes the solution to a complex Hermitian positive definite system of linear equations |
f07fpf (zposvx)
Example Text Example Data |
21 | zposvx nagf_lapacklin_zposvx Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations |
f07fqf (zcposv)
Example Text Example Data |
23 | zcposv nagf_lapacklin_zcposv Computes the solution to a complex Hermitian positive definite system of linear equations using mixed precision arithmetic |
f07frf (zpotrf)
Example Text Example Data |
15 | zpotrf nagf_lapacklin_zpotrf Cholesky factorization of complex Hermitian positive definite matrix |
f07fsf (zpotrs)
Example Text Example Data |
15 | zpotrs nagf_lapacklin_zpotrs Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07frf (zpotrf) |
f07ftf (zpoequ)
Example Text Example Data |
22 | zpoequ nagf_lapacklin_zpoequ Computes row and column scalings intended to equilibrate a complex Hermitian positive definite matrix and reduce its condition number |
f07fuf (zpocon)
Example Text Example Data |
15 | zpocon nagf_lapacklin_zpocon Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by f07frf (zpotrf) |
f07fvf (zporfs)
Example Text Example Data |
15 | zporfs nagf_lapacklin_zporfs Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides |
f07fwf (zpotri)
Example Text Example Data |
15 | zpotri nagf_lapacklin_zpotri Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07frf (zpotrf) |
f07gaf (dppsv)
Example Text Example Data |
21 | dppsv nagf_lapacklin_dppsv Computes the solution to a real symmetric positive definite system of linear equations, packed storage |
f07gbf (dppsvx)
Example Text Example Data |
21 | dppsvx nagf_lapacklin_dppsvx Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations, packed storage |
f07gdf (dpptrf)
Example Text Example Data |
15 | dpptrf nagf_lapacklin_dpptrf Cholesky factorization of real symmetric positive definite matrix, packed storage |
f07gef (dpptrs)
Example Text Example Data |
15 | dpptrs nagf_lapacklin_dpptrs Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07gdf (dpptrf), packed storage |
f07gff (dppequ)
Example Text Example Data |
22 | dppequ nagf_lapacklin_dppequ Computes row and column scalings intended to equilibrate a real symmetric positive definite matrix and reduce its condition number, packed storage |
f07ggf (dppcon)
Example Text Example Data |
15 | dppcon nagf_lapacklin_dppcon Estimate condition number of real symmetric positive definite matrix, matrix already factorized by f07gdf (dpptrf), packed storage |
f07ghf (dpprfs)
Example Text Example Data |
15 | dpprfs nagf_lapacklin_dpprfs Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides, packed storage |
f07gjf (dpptri)
Example Text Example Data |
15 | dpptri nagf_lapacklin_dpptri Inverse of real symmetric positive definite matrix, matrix already factorized by f07gdf (dpptrf), packed storage |
f07gnf (zppsv)
Example Text Example Data |
21 | zppsv nagf_lapacklin_zppsv Computes the solution to a complex Hermitian positive definite system of linear equations, packed storage |
f07gpf (zppsvx)
Example Text Example Data |
21 | zppsvx nagf_lapacklin_zppsvx Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations, packed storage |
f07grf (zpptrf)
Example Text Example Data |
15 | zpptrf nagf_lapacklin_zpptrf Cholesky factorization of complex Hermitian positive definite matrix, packed storage |
f07gsf (zpptrs)
Example Text Example Data |
15 | zpptrs nagf_lapacklin_zpptrs Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by f07grf (zpptrf), packed storage |
f07gtf (zppequ)
Example Text Example Data |
22 | zppequ nagf_lapacklin_zppequ Computes row and column scalings intended to equilibrate a complex Hermitian positive definite matrix and reduce its condition number, packed storage |
f07guf (zppcon)
Example Text Example Data |
15 | zppcon nagf_lapacklin_zppcon Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by f07grf (zpptrf), packed storage |
f07gvf (zpprfs)
Example Text Example Data |
15 | zpprfs nagf_lapacklin_zpprfs Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides, packed storage |
f07gwf (zpptri)
Example Text Example Data |
15 | zpptri nagf_lapacklin_zpptri Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07grf (zpptrf), packed storage |
f07haf (dpbsv)
Example Text Example Data |
21 | dpbsv nagf_lapacklin_dpbsv Computes the solution to a real symmetric positive definite banded system of linear equations |
f07hbf (dpbsvx)
Example Text Example Data |
21 | dpbsvx nagf_lapacklin_dpbsvx Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite banded system of linear equations |
f07hdf (dpbtrf)
Example Text Example Data |
15 | dpbtrf nagf_lapacklin_dpbtrf Cholesky factorization of real symmetric positive definite band matrix |
f07hef (dpbtrs)
Example Text Example Data |
15 | dpbtrs nagf_lapacklin_dpbtrs Solution of real symmetric positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by f07hdf (dpbtrf) |
f07hff (dpbequ)
Example Text Example Data |
22 | dpbequ nagf_lapacklin_dpbequ Computes row and column scalings intended to equilibrate a real symmetric positive definite banded matrix and reduce its condition number |
f07hgf (dpbcon)
Example Text Example Data |
15 | dpbcon nagf_lapacklin_dpbcon Estimate condition number of real symmetric positive definite band matrix, matrix already factorized by f07hdf (dpbtrf) |
f07hhf (dpbrfs)
Example Text Example Data |
15 | dpbrfs nagf_lapacklin_dpbrfs Refined solution with error bounds of real symmetric positive definite band system of linear equations, multiple right-hand sides |
f07hnf (zpbsv)
Example Text Example Data |
21 | zpbsv nagf_lapacklin_zpbsv Computes the solution to a complex Hermitian positive definite banded system of linear equations |
f07hpf (zpbsvx)
Example Text Example Data |
21 | zpbsvx nagf_lapacklin_zpbsvx Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite banded system of linear equations |
f07hrf (zpbtrf)
Example Text Example Data |
15 | zpbtrf nagf_lapacklin_zpbtrf Cholesky factorization of complex Hermitian positive definite band matrix |
f07hsf (zpbtrs)
Example Text Example Data |
15 | zpbtrs nagf_lapacklin_zpbtrs Solution of complex Hermitian positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by f07hrf (zpbtrf) |
f07htf (zpbequ)
Example Text Example Data |
22 | zpbequ nagf_lapacklin_zpbequ Computes row and column scalings intended to equilibrate a complex Hermitian positive definite banded matrix and reduce its condition number |
f07huf (zpbcon)
Example Text Example Data |
15 | zpbcon nagf_lapacklin_zpbcon Estimate condition number of complex Hermitian positive definite band matrix, matrix already factorized by f07hrf (zpbtrf) |
f07hvf (zpbrfs)
Example Text Example Data |
15 | zpbrfs nagf_lapacklin_zpbrfs Refined solution with error bounds of complex Hermitian positive definite band system of linear equations, multiple right-hand sides |
f07jaf (dptsv)
Example Text Example Data |
21 | dptsv nagf_lapacklin_dptsv Computes the solution to a real symmetric positive definite tridiagonal system of linear equations |
f07jbf (dptsvx)
Example Text Example Data |
21 | dptsvx nagf_lapacklin_dptsvx Uses the factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite tridiagonal system of linear equations |
f07jdf (dpttrf)
Example Text Example Data |
22 | dpttrf nagf_lapacklin_dpttrf Computes the factorization of a real symmetric positive definite tridiagonal matrix |
f07jef (dpttrs)
Example Text Example Data |
22 | dpttrs nagf_lapacklin_dpttrs Solves a real symmetric positive definite tridiagonal system using the factorization computed by f07jdf (dpttrf) |
f07jgf (dptcon)
Example Text Example Data |
22 | dptcon nagf_lapacklin_dptcon Computes the reciprocal of the condition number of a real symmetric positive definite tridiagonal system using the factorization computed by f07jdf (dpttrf) |
f07jhf (dptrfs)
Example Text Example Data |
22 | dptrfs nagf_lapacklin_dptrfs Refined solution with error bounds of real symmetric positive definite tridiagonal system of linear equations, multiple right-hand sides |
f07jnf (zptsv)
Example Text Example Data |
21 | zptsv nagf_lapacklin_zptsv Computes the solution to a complex Hermitian positive definite tridiagonal system of linear equations |
f07jpf (zptsvx)
Example Text Example Data |
21 | zptsvx nagf_lapacklin_zptsvx Uses the factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite tridiagonal system of linear equations |
f07jrf (zpttrf)
Example Text Example Data |
22 | zpttrf nagf_lapacklin_zpttrf Computes the factorization of a complex Hermitian positive definite tridiagonal matrix |
f07jsf (zpttrs)
Example Text Example Data |
22 | zpttrs nagf_lapacklin_zpttrs Solves a complex Hermitian positive definite tridiagonal system using the factorization computed by f07jrf (zpttrf) |
f07juf (zptcon)
Example Text Example Data |
22 | zptcon nagf_lapacklin_zptcon Computes the reciprocal of the condition number of a complex Hermitian positive definite tridiagonal system using the factorization computed by f07jrf (zpttrf) |
f07jvf (zptrfs)
Example Text Example Data |
22 | zptrfs nagf_lapacklin_zptrfs Refined solution with error bounds of complex Hermitian positive definite tridiagonal system of linear equations, multiple right-hand sides |
f07kdf (dpstrf)
Example Text Example Data |
23 | dpstrf nagf_lapacklin_dpstrf Cholesky factorization, with complete pivoting, of a real, symmetric, positive semidefinite matrix |
f07krf (zpstrf)
Example Text Example Data |
23 | zpstrf nagf_lapacklin_zpstrf Cholesky factorization of complex Hermitian positive semidefinite matrix |
f07maf (dsysv)
Example Text Example Data |
21 | dsysv nagf_lapacklin_dsysv Computes the solution to a real symmetric system of linear equations |
f07mbf (dsysvx)
Example Text Example Data |
21 | dsysvx nagf_lapacklin_dsysvx Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations |
f07mdf (dsytrf)
Example Text Example Data |
15 | dsytrf nagf_lapacklin_dsytrf Bunch–Kaufman factorization of real symmetric indefinite matrix |
f07mef (dsytrs)
Example Text Example Data |
15 | dsytrs nagf_lapacklin_dsytrs Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07mdf (dsytrf) |
f07mgf (dsycon)
Example Text Example Data |
15 | dsycon nagf_lapacklin_dsycon Estimate condition number of real symmetric indefinite matrix, matrix already factorized by f07mdf (dsytrf) |
f07mhf (dsyrfs)
Example Text Example Data |
15 | dsyrfs nagf_lapacklin_dsyrfs Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides |
f07mjf (dsytri)
Example Text Example Data |
15 | dsytri nagf_lapacklin_dsytri Inverse of real symmetric indefinite matrix, matrix already factorized by f07mdf (dsytrf) |
f07mnf (zhesv)
Example Text Example Data |
21 | zhesv nagf_lapacklin_zhesv Computes the solution to a complex Hermitian system of linear equations |
f07mpf (zhesvx)
Example Text Example Data |
21 | zhesvx nagf_lapacklin_zhesvx Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations |
f07mrf (zhetrf)
Example Text Example Data |
15 | zhetrf nagf_lapacklin_zhetrf Bunch–Kaufman factorization of complex Hermitian indefinite matrix |
f07msf (zhetrs)
Example Text Example Data |
15 | zhetrs nagf_lapacklin_zhetrs Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07mrf (zhetrf) |
f07muf (zhecon)
Example Text Example Data |
15 | zhecon nagf_lapacklin_zhecon Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by f07mrf (zhetrf) |
f07mvf (zherfs)
Example Text Example Data |
15 | zherfs nagf_lapacklin_zherfs Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides |
f07mwf (zhetri)
Example Text Example Data |
15 | zhetri nagf_lapacklin_zhetri Inverse of complex Hermitian indefinite matrix, matrix already factorized by f07mrf (zhetrf) |
f07nnf (zsysv)
Example Text Example Data |
21 | zsysv nagf_lapacklin_zsysv Computes the solution to a complex symmetric system of linear equations |
f07npf (zsysvx)
Example Text Example Data |
21 | zsysvx nagf_lapacklin_zsysvx Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations |
f07nrf (zsytrf)
Example Text Example Data |
15 | zsytrf nagf_lapacklin_zsytrf Bunch–Kaufman factorization of complex symmetric matrix |
f07nsf (zsytrs)
Example Text Example Data |
15 | zsytrs nagf_lapacklin_zsytrs Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by f07nrf (zsytrf) |
f07nuf (zsycon)
Example Text Example Data |
15 | zsycon nagf_lapacklin_zsycon Estimate condition number of complex symmetric matrix, matrix already factorized by f07nrf (zsytrf) |
f07nvf (zsyrfs)
Example Text Example Data |
15 | zsyrfs nagf_lapacklin_zsyrfs Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides |
f07nwf (zsytri)
Example Text Example Data |
15 | zsytri nagf_lapacklin_zsytri Inverse of complex symmetric matrix, matrix already factorized by f07nrf (zsytrf) |
f07paf (dspsv)
Example Text Example Data |
21 | dspsv nagf_lapacklin_dspsv Computes the solution to a real symmetric system of linear equations, packed storage |
f07pbf (dspsvx)
Example Text Example Data |
21 | dspsvx nagf_lapacklin_dspsvx Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage. Error bounds and a condition estimate are also computed |
f07pdf (dsptrf)
Example Text Example Data |
15 | dsptrf nagf_lapacklin_dsptrf Bunch–Kaufman factorization of real symmetric indefinite matrix, packed storage |
f07pef (dsptrs)
Example Text Example Data |
15 | dsptrs nagf_lapacklin_dsptrs Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07pdf (dsptrf), packed storage |
f07pgf (dspcon)
Example Text Example Data |
15 | dspcon nagf_lapacklin_dspcon Estimate condition number of real symmetric indefinite matrix, matrix already factorized by f07pdf (dsptrf), packed storage |
f07phf (dsprfs)
Example Text Example Data |
15 | dsprfs nagf_lapacklin_dsprfs Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage |
f07pjf (dsptri)
Example Text Example Data |
15 | dsptri nagf_lapacklin_dsptri Inverse of real symmetric indefinite matrix, matrix already factorized by f07pdf (dsptrf), packed storage |
f07pnf (zhpsv)
Example Text Example Data |
21 | zhpsv nagf_lapacklin_zhpsv Computes the solution to a complex Hermitian system of linear equations, packed storage |
f07ppf (zhpsvx)
Example Text Example Data |
21 | zhpsvx nagf_lapacklin_zhpsvx Uses the diagonal pivoting factorization to compute the solution to a complex, Hermitian, system of linear equations, error bounds and condition estimates. Packed storage |
f07prf (zhptrf)
Example Text Example Data |
15 | zhptrf nagf_lapacklin_zhptrf Bunch–Kaufman factorization of complex Hermitian indefinite matrix, packed storage |
f07psf (zhptrs)
Example Text Example Data |
15 | zhptrs nagf_lapacklin_zhptrs Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by f07prf (zhptrf), packed storage |
f07puf (zhpcon)
Example Text Example Data |
15 | zhpcon nagf_lapacklin_zhpcon Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by f07prf (zhptrf), packed storage |
f07pvf (zhprfs)
Example Text Example Data |
15 | zhprfs nagf_lapacklin_zhprfs Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage |
f07pwf (zhptri)
Example Text Example Data |
15 | zhptri nagf_lapacklin_zhptri Inverse of complex Hermitian indefinite matrix, matrix already factorized by f07prf (zhptrf), packed storage |
f07qnf (zspsv)
Example Text Example Data |
21 | zspsv nagf_lapacklin_zspsv Computes the solution to a complex symmetric system of linear equations, packed storage |
f07qpf (zspsvx)
Example Text Example Data |
21 | zspsvx nagf_lapacklin_zspsvx Uses the diagonal pivoting factorization to compute the solution to a complex, symmetric, system of linear equations, error bounds and condition estimates. Packed storage |
f07qrf (zsptrf)
Example Text Example Data |
15 | zsptrf nagf_lapacklin_zsptrf Bunch–Kaufman factorization of complex symmetric matrix, packed storage |
f07qsf (zsptrs)
Example Text Example Data |
15 | zsptrs nagf_lapacklin_zsptrs Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by f07qrf (zsptrf), packed storage |
f07quf (zspcon)
Example Text Example Data |
15 | zspcon nagf_lapacklin_zspcon Estimate condition number of complex symmetric matrix, matrix already factorized by f07qrf (zsptrf), packed storage |
f07qvf (zsprfs)
Example Text Example Data |
15 | zsprfs nagf_lapacklin_zsprfs Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage |
f07qwf (zsptri)
Example Text Example Data |
15 | zsptri nagf_lapacklin_zsptri Inverse of complex symmetric matrix, matrix already factorized by f07qrf (zsptrf), packed storage |
f07tef (dtrtrs)
Example Text Example Data |
15 | dtrtrs nagf_lapacklin_dtrtrs Solution of real triangular system of linear equations, multiple right-hand sides |
f07tgf (dtrcon)
Example Text Example Data |
15 | dtrcon nagf_lapacklin_dtrcon Estimate condition number of real triangular matrix |
f07thf (dtrrfs)
Example Text Example Data |
15 | dtrrfs nagf_lapacklin_dtrrfs Error bounds for solution of real triangular system of linear equations, multiple right-hand sides |
f07tjf (dtrtri)
Example Text Example Data |
15 | dtrtri nagf_lapacklin_dtrtri Inverse of real triangular matrix |
f07tsf (ztrtrs)
Example Text Example Data |
15 | ztrtrs nagf_lapacklin_ztrtrs Solution of complex triangular system of linear equations, multiple right-hand sides |
f07tuf (ztrcon)
Example Text Example Data |
15 | ztrcon nagf_lapacklin_ztrcon Estimate condition number of complex triangular matrix |
f07tvf (ztrrfs)
Example Text Example Data |
15 | ztrrfs nagf_lapacklin_ztrrfs Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides |
f07twf (ztrtri)
Example Text Example Data |
15 | ztrtri nagf_lapacklin_ztrtri Inverse of complex triangular matrix |
f07uef (dtptrs)
Example Text Example Data |
15 | dtptrs nagf_lapacklin_dtptrs Solution of real triangular system of linear equations, multiple right-hand sides, packed storage |
f07ugf (dtpcon)
Example Text Example Data |
15 | dtpcon nagf_lapacklin_dtpcon Estimate condition number of real triangular matrix, packed storage |
f07uhf (dtprfs)
Example Text Example Data |
15 | dtprfs nagf_lapacklin_dtprfs Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage |
f07ujf (dtptri)
Example Text Example Data |
15 | dtptri nagf_lapacklin_dtptri Inverse of real triangular matrix, packed storage |
f07usf (ztptrs)
Example Text Example Data |
15 | ztptrs nagf_lapacklin_ztptrs Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage |
f07uuf (ztpcon)
Example Text Example Data |
15 | ztpcon nagf_lapacklin_ztpcon Estimate condition number of complex triangular matrix, packed storage |
f07uvf (ztprfs)
Example Text Example Data |
15 | ztprfs nagf_lapacklin_ztprfs Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage |
f07uwf (ztptri)
Example Text Example Data |
15 | ztptri nagf_lapacklin_ztptri Inverse of complex triangular matrix, packed storage |
f07vef (dtbtrs)
Example Text Example Data |
15 | dtbtrs nagf_lapacklin_dtbtrs Solution of real band triangular system of linear equations, multiple right-hand sides |
f07vgf (dtbcon)
Example Text Example Data |
15 | dtbcon nagf_lapacklin_dtbcon Estimate condition number of real band triangular matrix |
f07vhf (dtbrfs)
Example Text Example Data |
15 | dtbrfs nagf_lapacklin_dtbrfs Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides |
f07vsf (ztbtrs)
Example Text Example Data |
15 | ztbtrs nagf_lapacklin_ztbtrs Solution of complex band triangular system of linear equations, multiple right-hand sides |
f07vuf (ztbcon)
Example Text Example Data |
15 | ztbcon nagf_lapacklin_ztbcon Estimate condition number of complex band triangular matrix |
f07vvf (ztbrfs)
Example Text Example Data |
15 | ztbrfs nagf_lapacklin_ztbrfs Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides |
f07wdf (dpftrf)
Example Text Example Data |
23 | dpftrf nagf_lapacklin_dpftrf Cholesky factorization of real symmetric positive definite matrix, Rectangular Full Packed format |
f07wef (dpftrs)
Example Text Example Data |
23 | dpftrs nagf_lapacklin_dpftrs Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by f07wdf (dpftrf), Rectangular Full Packed format |
f07wjf (dpftri)
Example Text Example Data |
23 | dpftri nagf_lapacklin_dpftri Inverse of real symmetric positive definite matrix, matrix already factorized by f07wdf (dpftrf), Rectangular Full Packed format |
f07wkf (dtftri)
Example Text Example Data |
23 | dtftri nagf_lapacklin_dtftri Inverse of real triangular matrix, Rectangular Full Packed format |
f07wrf (zpftrf)
Example Text Example Data |
23 | zpftrf nagf_lapacklin_zpftrf Cholesky factorization of complex Hermitian positive definite matrix, Rectangular Full Packed format |
f07wsf (zpftrs)
Example Text Example Data |
23 | zpftrs nagf_lapacklin_zpftrs Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by f07wrf (zpftrf), Rectangular Full Packed format |
f07wwf (zpftri)
Example Text Example Data |
23 | zpftri nagf_lapacklin_zpftri Inverse of complex Hermitian positive definite matrix, matrix already factorized by f07wrf (zpftrf), Rectangular Full Packed format |
f07wxf (ztftri)
Example Text Example Data |
23 | ztftri nagf_lapacklin_ztftri Inverse of complex triangular matrix, Rectangular Full Packed format |