NAG Library Routine Document
f07wrf (zpftrf)
1
Purpose
f07wrf (zpftrf) computes the Cholesky factorization of a complex Hermitian positive definite matrix stored in Rectangular Full Packed (RFP) format.
2
Specification
Fortran Interface
Integer, Intent (In) | :: | n | Integer, Intent (Out) | :: | info | Complex (Kind=nag_wp), Intent (Inout) | :: | ar(n*(n+1)/2) | Character (1), Intent (In) | :: | transr, uplo |
|
The routine may be called by its
LAPACK
name zpftrf.
3
Description
f07wrf (zpftrf) forms the Cholesky factorization of a complex Hermitian positive definite matrix
either as
if
or
if
, where
is an upper triangular matrix and
is a lower triangular, stored in RFP format.
The RFP storage format is described in
Section 3.3.3 in the F07 Chapter Introduction.
4
References
Demmel J W (1989) On floating-point errors in Cholesky
LAPACK Working Note No. 14 University of Tennessee, Knoxville
http://www.netlib.org/lapack/lawnspdf/lawn14.pdf
Gustavson F G, Waśniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2
5
Arguments
- 1: – Character(1)Input
-
On entry: specifies whether the normal RFP representation of
or its conjugate transpose is stored.
- The matrix is stored in normal RFP format.
- The conjugate transpose of the RFP representation of the matrix is stored.
Constraint:
or .
- 2: – Character(1)Input
-
On entry: specifies whether the upper or lower triangular part of
is stored.
- The upper triangular part of is stored, and is factorized as , where is upper triangular.
- The lower triangular part of is stored, and is factorized as , where is lower triangular.
Constraint:
or .
- 3: – IntegerInput
-
On entry: , the order of the matrix .
Constraint:
.
- 4: – Complex (Kind=nag_wp) arrayInput/Output
-
On entry: the upper or lower triangular part (as specified by
uplo) of the
by
Hermitian matrix
, in either normal or transposed RFP format (as specified by
transr). The storage format is described in detail in
Section 3.3.3 in the F07 Chapter Introduction.
On exit: if , the factor or from the Cholesky factorization or , in the same storage format as .
- 5: – IntegerOutput
On exit:
unless the routine detects an error (see
Section 6).
6
Error Indicators and Warnings
If , argument had an illegal value. An explanatory message is output, and execution of the program is terminated.
-
The leading minor of order
is not positive definite and the factorization could not be completed. Hence
itself is not positive definite. This may indicate an error in forming the matrix
.
There is no routine specifically designed to factorize a Hermitian matrix stored in RFP format which is not positive definite; the matrix must be treated as a full Hermitian matrix, by calling
f07mrf (zhetrf).
7
Accuracy
If
, the computed factor
is the exact factor of a perturbed matrix
, where
is a modest linear function of
, and
is the
machine precision.
If , a similar statement holds for the computed factor . It follows that .
8
Parallelism and Performance
f07wrf (zpftrf) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f07wrf (zpftrf) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The total number of real floating-point operations is approximately .
A call to
f07wrf (zpftrf) may be followed by calls to the routines:
The real analogue of this routine is
f07wdf (dpftrf).
10
Example
This example computes the Cholesky factorization of the matrix
, where
and is stored using RFP format.
10.1
Program Text
Program Text (f07wrfe.f90)
10.2
Program Data
Program Data (f07wrfe.d)
10.3
Program Results
Program Results (f07wrfe.r)