NAG Toolbox
G03 – multivariate methods
G03 Introduction
g03aa
– Performs principal component analysis
nag_mv_prin_comp
g03ac
– Performs canonical variate analysis
nag_mv_canon_var
g03ad
– Performs canonical correlation analysis
nag_mv_canon_corr
g03ba
– Computes orthogonal rotations for loading matrix, generalized orthomax criterion
nag_mv_rot_orthomax
g03bc
– Computes Procrustes rotations
nag_mv_rot_procrustes
g03bd
– ProMax rotations
nag_mv_rot_promax
g03ca
– Computes maximum likelihood estimates of the parameters of a factor analysis model, factor loadings, communalities and residual correlations
nag_mv_factor
g03cc
– Computes factor score coefficients (for use after g03ca)
nag_mv_factor_score
g03da
– Computes test statistic for equality of within-group covariance matrices and matrices for discriminant analysis
nag_mv_discrim
g03db
– Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after g03da)
nag_mv_discrim_mahal
g03dc
– Allocates observations to groups according to selected rules (for use after g03da)
nag_mv_discrim_group
g03ea
– Computes distance matrix
nag_mv_distance_mat
g03ec
– Hierarchical cluster analysis
nag_mv_cluster_hier
g03ef
–
K
-means cluster analysis
nag_mv_cluster_kmeans
g03eh
– Constructs dendrogram (for use after g03ec)
nag_mv_cluster_hier_dendrogram
g03ej
– Computes cluster indicator variable (for use after g03ec)
nag_mv_cluster_hier_indicator
g03fa
– Performs principal coordinate analysis, classical metric scaling
nag_mv_multidimscal_metric
g03fc
– Performs non-metric (ordinal) multidimensional scaling
nag_mv_multidimscal_ordinal
g03ga
– Fits a Gaussian mixture model
nag_mv_gaussian_mixture
g03za
– Produces standardized values (
z
-scores) for a data matrix
nag_mv_z_scores
G02
G04