NAG FL Interface
d06acf (dim2_​gen_​front)

Settings help

FL Name Style:


FL Specification Language:


1 Purpose

d06acf generates a triangular mesh of a closed polygonal region in 2, given a mesh of its boundary. It uses an Advancing Front process, based on an incremental method.

2 Specification

Fortran Interface
Subroutine d06acf ( nvb, nvint, nvmax, nedge, edge, nv, nelt, coor, conn, weight, itrace, rwork, lrwork, iwork, liwork, ifail)
Integer, Intent (In) :: nvb, nvint, nvmax, nedge, edge(3,nedge), itrace, lrwork, liwork
Integer, Intent (Inout) :: ifail
Integer, Intent (Out) :: nv, nelt, conn(3,2*nvmax+5), iwork(liwork)
Real (Kind=nag_wp), Intent (In) :: weight(*)
Real (Kind=nag_wp), Intent (Inout) :: coor(2,nvmax)
Real (Kind=nag_wp), Intent (Out) :: rwork(lrwork)
C Header Interface
#include <nag.h>
void  d06acf_ (const Integer *nvb, const Integer *nvint, const Integer *nvmax, const Integer *nedge, const Integer edge[], Integer *nv, Integer *nelt, double coor[], Integer conn[], const double weight[], const Integer *itrace, double rwork[], const Integer *lrwork, Integer iwork[], const Integer *liwork, Integer *ifail)
The routine may be called by the names d06acf or nagf_mesh_dim2_gen_front.

3 Description

d06acf generates the set of interior vertices using an Advancing Front process, based on an incremental method. It allows you to specify a number of fixed interior mesh vertices together with weights which allow concentration of the mesh in their neighbourhood. For more details about the triangulation method, consult the D06 Chapter Introduction as well as George and Borouchaki (1998).
This routine is derived from material in the MODULEF package from INRIA (Institut National de Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite Elements Editions HERMES, Paris

5 Arguments

1: nvb Integer Input
On entry: the number of vertices in the input boundary mesh.
Constraint: nvb3.
2: nvint Integer Input
On entry: the number of fixed interior mesh vertices to which a weight will be applied.
Constraint: nvint0.
3: nvmax Integer Input
On entry: the maximum number of vertices in the mesh to be generated.
Constraint: nvmaxnvb+nvint.
4: nedge Integer Input
On entry: the number of boundary edges in the input mesh.
Constraint: nedge1.
5: edge(3,nedge) Integer array Input
On entry: the specification of the boundary edges. edge(1,j) and edge(2,j) contain the vertex numbers of the two end points of the jth boundary edge. edge(3,j) is a user-supplied tag for the jth boundary edge and is not used by d06acf.
Constraint: 1edge(i,j)nvb and edge(1,j)edge(2,j), for i=1,2 and j=1,2,,nedge.
6: nv Integer Output
On exit: the total number of vertices in the output mesh (including both boundary and interior vertices). If nvb+nvint=nvmax, no interior vertices will be generated and nv=nvmax.
7: nelt Integer Output
On exit: the number of triangular elements in the mesh.
8: coor(2,nvmax) Real (Kind=nag_wp) array Input/Output
On entry: coor(1,i) contains the x coordinate of the ith input boundary mesh vertex, for i=1,2,,nvb. coor(1,i) contains the x coordinate of the (i-nvb)th fixed interior vertex, for i=nvb+1,,nvb+nvint. For boundary and interior vertices, coor(2,i) contains the corresponding y coordinate, for i=1,2,,nvb+nvint.
On exit: coor(1,i) will contain the x coordinate of the (i-nvb-nvint)th generated interior mesh vertex, for i=nvb+nvint+1,,nv; while coor(2,i) will contain the corresponding y coordinate. The remaining elements are unchanged.
9: conn(3,2×nvmax+5) Integer array Output
On exit: the connectivity of the mesh between triangles and vertices. For each triangle j, conn(i,j) gives the indices of its three vertices (in anticlockwise order), for i=1,2,3 and j=1,2,,nelt.
10: weight(*) Real (Kind=nag_wp) array Input
Note: the dimension of the array weight must be at least max(1,nvint).
On entry: the weight of fixed interior vertices. It is the diameter of triangles (length of the longer edge) created around each of the given interior vertices.
Constraint: if nvint>0, weight(i)>0.0, for i=1,2,,nvint.
11: itrace Integer Input
On entry: the level of trace information required from d06acf.
itrace0
No output is generated.
itrace1
Output from the meshing solver is printed on the current advisory message unit (see x04abf). This output contains details of the vertices and triangles generated by the process.
You are advised to set itrace=0, unless you are experienced with finite element mesh generation.
12: rwork(lrwork) Real (Kind=nag_wp) array Workspace
13: lrwork Integer Input
On entry: the dimension of the array rwork as declared in the (sub)program from which d06acf is called.
Constraint: lrwork12×nvmax+30015.
14: iwork(liwork) Integer array Workspace
15: liwork Integer Input
On entry: the dimension of the array iwork as declared in the (sub)program from which d06acf is called.
Constraint: liwork8×nedge+53×nvmax+2×nvb+10078.
16: ifail Integer Input/Output
On entry: ifail must be set to 0, −1 or 1 to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of 0 causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of −1 means that an error message is printed while a value of 1 means that it is not.
If halting is not appropriate, the value −1 or 1 is recommended. If message printing is undesirable, then the value 1 is recommended. Otherwise, the value 0 is recommended. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry ifail=0 or −1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
ifail=1
On entry, edge(I,J)=value, I=value, J=value and nvb=value.
Constraint: edge(I,J)1 and edge(I,J)nvb.
On entry, liwork=value and LIWKMN=value.
Constraint: liworkLIWKMN.
On entry, lrwork=value and LRWKMN=value.
Constraint: lrworkLRWKMN.
On entry, nedge=value.
Constraint: nedge1.
On entry, nv=value, nvint=value and nvmax=value.
Constraint: nvb+nvintnvmax.
On entry, nvb=value.
Constraint: nvb3.
On entry, nvint=value.
Constraint: nvint0.
On entry, the end points of the edge J have the same index I: J=value and I=value.
On entry, weight(I)=value and I=value.
Constraint: weight(I)>0.0.
ifail=2
An error has occurred during the generation of the interior mesh. Check the definition of the boundary (arguments coor and edge) as well as the orientation of the boundary (especially in the case of a multiple connected component boundary). Setting itrace>0 may provide more details.
ifail=3
An error has occurred during the generation of the boundary mesh. Check the definition of the boundary (arguments coor and edge) as well as the orientation of the boundary (especially in the case of a multiple connected component boundary). Setting itrace>0 may provide more details.
ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
ifail=-399
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
ifail=-999
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
d06acf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The position of the internal vertices is a function position of the vertices on the given boundary. A fine mesh on the boundary results in a fine mesh in the interior. During the process vertices are generated on edges of the mesh Ti to obtain the mesh Ti+1 in the general incremental method (consult the D06 Chapter Introduction or George and Borouchaki (1998)).
You are advised to take care to set the boundary inputs properly, especially for a boundary with multiply connected components. The orientation of the interior boundaries should be in clockwise order and opposite to that of the exterior boundary. If the boundary has only one connected component, its orientation should be anticlockwise.

10 Example

In this example, a geometry with two holes (two wings inside an exterior circle) is meshed using a Delaunay–Voronoi method. The exterior circle is centred at the point (1.5,0.0) with a radius 4.5, the first wing begins at the origin and it is normalized, finally the last wing is also normalized and begins at the point (0.8,-0.3). To be able to carry out some realistic computation on that geometry, some interior points have been introduced to have a finer mesh in the wake of those airfoils.
The boundary mesh has 120 vertices and 120 edges (see Figure 1 top). Note that the particular mesh generated could be sensitive to the machine precision and, therefore, may differ from one implementation to another.

10.1 Program Text

Program Text (d06acfe.f90)

10.2 Program Data

Program Data (d06acfe.d)

10.3 Program Results

Program Results (d06acfe.r)
The boundary mesh (top), the interior mesh (bottom) of a double wing inside a circle geometry
Figure 1: The boundary mesh (top), the interior mesh (bottom) of a
double wing inside a circle geometry