The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).
6Error Indicators and Warnings
NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_REAL
On entry, .
Constraint: .
On failure, the function returns zero.
NE_REAL_2
On entry, and ; the integral is undefined.
Constraint: .
On failure, the function returns zero.
NW_INTEGRAL_INFINITE
On entry, and ; the integral is infinite.
On failure, the function returns the largest machine number (see X02ALC).
7Accuracy
In principle s21bec is capable of producing full machine precision. However, round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine precision.
8Parallelism and Performance
Background information to multithreading can be found in the Multithreading documentation.
s21bec is not threaded in any implementation.
9Further Comments
You should consult the S Chapter Introduction, which shows the relationship between this function and the Carlson definitions of the elliptic integrals. In particular, the relationship between the argument-constraints for both forms becomes clear.
For more information on the algorithm used to compute , see the function document for s21bbc.
If you wish to input a value of phi outside the range allowed by this function you should refer to Section 17.4 of Abramowitz and Stegun (1972) for useful identities. For example, and where is an integer and is the complete elliptic integral given by s21bhc.
A parameter can be replaced by one less than unity using , .
10Example
This example simply generates a small set of nonextreme arguments that are used with the function to produce the table of results.