
#include <nag.h>

$$\begin{array}{ll}\underset{x,y\text{}\in \text{}\mathbb{R}}{\mathrm{minimize}}\phantom{\rule{0.25em}{0ex}}& y\\ \text{subject to \hspace{1em}}& \left(\begin{array}{ccc}1& x1& y\\ x1& 3/4& 0\\ y& 0& 16\end{array}\right)\u2ab00\\ & \left(\begin{array}{cc}x& xy\\ xy& 1\end{array}\right)\u2ab00\\ & x\ge 0\\ & \mathrm{3}\le y\le 3\end{array}$$ 
$$\sum _{\mathit{i,j}=1}^{n}{x}_{i}{x}_{j}{Q}_{ij}^{k}+\sum _{\mathit{i}=1}^{n}{x}_{i}{A}_{i}^{k}{A}_{0}^{k}\u2ab00\text{,\hspace{1em}}k=1,\dots ,{m}_{A}\text{.}$$ 
$${A}_{0}^{1}=\left(\begin{array}{ccc}\mathrm{1}& 1& 0\\ & \mathrm{3}/4& 0\\ & & \mathrm{16}\end{array}\right)\text{,\hspace{1em}}{A}_{1}^{1}=\left(\begin{array}{ccc}0& 1& 0\\ & 0& 0\\ & & 0\end{array}\right)\text{,\hspace{1em}}{A}_{2}^{1}=\left(\begin{array}{ccc}0& 0& 1\\ & 0& 0\\ & & 0\end{array}\right)$$ 
$${A}_{0}^{2}=\left(\begin{array}{cc}0& 0\\ & \mathrm{1}\end{array}\right)\text{,\hspace{1em}}{A}_{1}^{2}=\left(\begin{array}{cc}1& 0\\ & 0\end{array}\right)\text{,\hspace{1em}}{A}_{2}^{2}\text{ empty,\hspace{1em}}{Q}_{12}^{2}=\left(\begin{array}{cc}0& \mathrm{1}\\ 0& 0\end{array}\right)\text{.}$$ 