Program e04ryfe
! E04RYF Example Program Text
! Demonstrate the life-cycle of a handle of a typical BMI-SDP problem
! by printing the evolution of the HANDLE in certain stages.
! Mark 29.3 Release. NAG Copyright 2023.
! .. Use Statements ..
Use, Intrinsic :: iso_c_binding, Only: c_null_ptr, &
c_ptr
Use nag_library, Only: e04raf, e04ref, e04rhf, e04rnf, e04rpf, e04ryf, &
e04rzf, e04svf, e04zmf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: maxnnz = 6, maxnvar = 2, nout = 6
! .. Local Scalars ..
Type (c_ptr) :: h
Integer :: dima, idblk, ifail, inform, nblk, &
nnzasum, nvar
! .. Local Arrays ..
Real (Kind=nag_wp) :: a(maxnnz), rdummy(1), rinfo(32), &
stats(32), x(maxnvar)
Integer :: icola(maxnnz), idummy(1), &
irowa(maxnnz), nnza(maxnvar+1)
! .. Executable Statements ..
Write (nout,*) 'E04RYF Example Program Results'
Write (nout,*)
Flush (nout)
h = c_null_ptr
! Start a problem formulation with 2 variables.
nvar = 2
ifail = 0
Call e04raf(h,nvar,ifail)
! Anything can be defined at this phase.
Write (nout,*) 'Freshly created handle'
Flush (nout)
ifail = 0
Call e04ryf(h,nout,'Overview',ifail)
! Define linear objective (min y).
ifail = 0
Call e04ref(h,nvar,(/0.0_nag_wp,1.0_nag_wp/),ifail)
! Add simple bounds (x>=0, -3<=y<=3).
ifail = 0
Call e04rhf(h,nvar,(/0.0_nag_wp,-3.0_nag_wp/), &
(/1E20_nag_wp,3.0_nag_wp/),ifail)
! The simple bounds and the objective are set and cannot be changed.
Write (nout,*)
Write (nout,*) &
'Handle after definition of simple bounds and the objective'
Flush (nout)
ifail = 0
Call e04ryf(h,nout,'Overview,Objective,Simple Bounds',ifail)
! Definition of the first (linear) matrix constraint
! ( 1 x-1 y )
! (x-1 3/4 0 ) >= 0
! ( y 0 16 )
! only upper triangles, thus we have matrices
! ( 1 -1 0 ) ( 0 1 0 ) ( 0 0 1 )
! A0 = -( 3/4 0 ), A1 = ( 0 0 ), A2 = ( 0 0 )
! ( 16 ) ( 0 ) ( 0 )
! Note: don't forget the minus at A0 term!
dima = 3
nnzasum = 6
nblk = 1
! A0
irowa(1:4) = (/1,1,2,3/)
icola(1:4) = (/1,2,2,3/)
a(1:4) = (/-1.0_nag_wp,1.0_nag_wp,-0.75_nag_wp,-16.0_nag_wp/)
nnza(1) = 4
! A1
irowa(5:5) = (/1/)
icola(5:5) = (/2/)
a(5:5) = (/1.0_nag_wp/)
nnza(2) = 1
! A2
irowa(6:6) = (/1/)
icola(6:6) = (/3/)
a(6:6) = (/1.0_nag_wp/)
nnza(3) = 1
idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,idummy,idblk, &
ifail)
! It is possible to add or extend existing matrix constraints.
Write (nout,*)
Write (nout,*) 'Handle after definition of the 1st matrix constraint'
Flush (nout)
ifail = 0
Call e04ryf(h,nout,'Overview,Matrix Constraints',ifail)
! Definition of the absolute term and linear part of BMI
! ( x -xy )
! (-xy 1 ) >= 0
! thus
! ( 0 0 ) ( 1 0 )
! A0 = -( 1 ), A1 = ( 0 ), A2 = zero
! Note: don't forget the minus at A0 term!
dima = 2
nnzasum = 2
nblk = 1
! A0
irowa(1:1) = (/2/)
icola(1:1) = (/2/)
a(1:1) = (/-1.0_nag_wp/)
nnza(1) = 1
! A1
irowa(2:2) = (/1/)
icola(2:2) = (/1/)
a(2:2) = (/1.0_nag_wp/)
nnza(2) = 1
! A2
nnza(3) = 0
idblk = 0
ifail = 0
Call e04rnf(h,nvar,dima,nnza,nnzasum,irowa,icola,a,nblk,idummy,idblk, &
ifail)
! It is possible to add or extend existing matrix constraints.
Write (nout,*)
Write (nout,*) &
'Handle after partial definition of the 2nd matrix constraint'
Flush (nout)
ifail = 0
Call e04ryf(h,nout,'Matrix Constraints',ifail)
! Extending current matrix constraint (with IDBLK) by bilinear term
! ( 0 -1 )
! Q12 = ( 0 0 ).
dima = 2
nnzasum = 1
nnza(1) = 1
irowa(1:1) = (/1/)
icola(1:1) = (/2/)
a(1:1) = (/-1.0_nag_wp/)
ifail = 0
Call e04rpf(h,1,(/1/),(/2/),dima,nnza,nnzasum,irowa,icola,a,idblk,ifail)
! Our problem completely defined.
Write (nout,*)
Write (nout,*) 'Handle with the complete problem formulation'
Flush (nout)
ifail = 0
Call e04ryf(h,nout,'Overview,Matrix Constraints,Multipliers Sizes', &
ifail)
ifail = 0
Call e04ryf(h,nout,'Matrix Constraints Detailed',ifail)
! Set optional arguments for the solver.
ifail = 0
Call e04zmf(h,'Print Options = No',ifail)
ifail = 0
Call e04zmf(h,'Initial X = Automatic',ifail)
! Options can be printed even outside the solver.
Write (nout,*)
Flush (nout)
ifail = 0
Call e04ryf(h,nout,'Options',ifail)
! Call the solver.
ifail = 0
Call e04svf(h,nvar,x,0,rdummy,0,rdummy,0,rdummy,rinfo,stats,inform, &
ifail)
! After solver finished.
Write (nout,*)
Write (nout,*) 'Problem solved'
Flush (nout)
ifail = 0
Call e04ryf(h,nout,'Overview',ifail)
! Print result.
Write (nout,*)
Write (nout,'(1X,A,F9.2)') 'Final objective value = ', rinfo(1)
Write (nout,'(1X,A,2F9.2)') 'Final X = ', x(1:nvar)
! release all memory held in the handle
ifail = 0
Call e04rzf(h,ifail)
End Program e04ryfe