NAG FL Interface
f08wnf (zggev)

Note: this routine is deprecated. Replaced by f08wqf.
Settings help

FL Name Style:


FL Specification Language:


1 Purpose

f08wnf computes for a pair of n×n complex nonsymmetric matrices (A,B) the generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ algorithm. f08wnf is marked as deprecated by LAPACK; the replacement routine is f08wqf which makes better use of Level 3 BLAS.

2 Specification

Fortran Interface
Subroutine f08wnf ( jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
Integer, Intent (In) :: n, lda, ldb, ldvl, ldvr, lwork
Integer, Intent (Out) :: info
Real (Kind=nag_wp), Intent (Out) :: rwork(max(1,8*n))
Complex (Kind=nag_wp), Intent (Inout) :: a(lda,*), b(ldb,*), vl(ldvl,*), vr(ldvr,*)
Complex (Kind=nag_wp), Intent (Out) :: alpha(n), beta(n), work(max(1,lwork))
Character (1), Intent (In) :: jobvl, jobvr
C Header Interface
#include <nag.h>
void  f08wnf_ (const char *jobvl, const char *jobvr, const Integer *n, Complex a[], const Integer *lda, Complex b[], const Integer *ldb, Complex alpha[], Complex beta[], Complex vl[], const Integer *ldvl, Complex vr[], const Integer *ldvr, Complex work[], const Integer *lwork, double rwork[], Integer *info, const Charlen length_jobvl, const Charlen length_jobvr)
The routine may be called by the names f08wnf, nagf_lapackeig_zggev or its LAPACK name zggev.

3 Description

A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio α/β=λ, such that A-λB is singular. It is usually represented as the pair (α,β), as there is a reasonable interpretation for β=0, and even for both being zero.
The right generalized eigenvector vj corresponding to the generalized eigenvalue λj of (A,B) satisfies
A vj = λj B vj .  
The left generalized eigenvector uj corresponding to the generalized eigenvalue λj of (A,B) satisfies
ujH A = λj ujH B ,  
where ujH is the conjugate-transpose of uj.
All the eigenvalues and, if required, all the eigenvectors of the complex generalized eigenproblem Ax=λBx, where A and B are complex, square matrices, are determined using the QZ algorithm. The complex QZ algorithm consists of three stages:
  1. 1.A is reduced to upper Hessenberg form (with real, non-negative subdiagonal elements) and at the same time B is reduced to upper triangular form.
  2. 2.A is further reduced to triangular form while the triangular form of B is maintained and the diagonal elements of B are made real and non-negative. This is the generalized Schur form of the pair (A,B) .
    This routine does not actually produce the eigenvalues λj, but instead returns αj and βj such that
    λj=αj/βj,  j=1,2,,n.  
    The division by βj becomes your responsibility, since βj may be zero, indicating an infinite eigenvalue.
  3. 3.If the eigenvectors are required they are obtained from the triangular matrices and then transformed back into the original coordinate system.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia https://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore
Wilkinson J H (1979) Kronecker's canonical form and the QZ algorithm Linear Algebra Appl. 28 285–303

5 Arguments

1: jobvl Character(1) Input
On entry: if jobvl='N', do not compute the left generalized eigenvectors.
If jobvl='V', compute the left generalized eigenvectors.
Constraint: jobvl='N' or 'V'.
2: jobvr Character(1) Input
On entry: if jobvr='N', do not compute the right generalized eigenvectors.
If jobvr='V', compute the right generalized eigenvectors.
Constraint: jobvr='N' or 'V'.
3: n Integer Input
On entry: n, the order of the matrices A and B.
Constraint: n0.
4: a(lda,*) Complex (Kind=nag_wp) array Input/Output
Note: the second dimension of the array a must be at least max(1,n).
On entry: the matrix A in the pair (A,B).
On exit: a has been overwritten.
5: lda Integer Input
On entry: the first dimension of the array a as declared in the (sub)program from which f08wnf is called.
Constraint: ldamax(1,n).
6: b(ldb,*) Complex (Kind=nag_wp) array Input/Output
Note: the second dimension of the array b must be at least max(1,n).
On entry: the matrix B in the pair (A,B).
On exit: b has been overwritten.
7: ldb Integer Input
On entry: the first dimension of the array b as declared in the (sub)program from which f08wnf is called.
Constraint: ldbmax(1,n).
8: alpha(n) Complex (Kind=nag_wp) array Output
On exit: see the description of beta.
9: beta(n) Complex (Kind=nag_wp) array Output
On exit: alpha(j)/beta(j), for j=1,2,,n, will be the generalized eigenvalues.
Note:  the quotients alpha(j)/beta(j) may easily overflow or underflow, and beta(j) may even be zero. Thus, you should avoid naively computing the ratio αj/βj. However, max|αj| will always be less than and usually comparable with A2 in magnitude, and max|βj| will always be less than and usually comparable with B2.
10: vl(ldvl,*) Complex (Kind=nag_wp) array Output
Note: the second dimension of the array vl must be at least max(1,n) if jobvl='V', and at least 1 otherwise.
On exit: if jobvl='V', the left generalized eigenvectors uj are stored one after another in the columns of vl, in the same order as the corresponding eigenvalues. Each eigenvector will be scaled so the largest component will have |real part|+|imag. part|=1.
If jobvl='N', vl is not referenced.
11: ldvl Integer Input
On entry: the first dimension of the array vl as declared in the (sub)program from which f08wnf is called.
Constraints:
  • if jobvl='V', ldvl max(1,n) ;
  • otherwise ldvl1.
12: vr(ldvr,*) Complex (Kind=nag_wp) array Output
Note: the second dimension of the array vr must be at least max(1,n) if jobvr='V', and at least 1 otherwise.
On exit: if jobvr='V', the right generalized eigenvectors vj are stored one after another in the columns of vr, in the same order as the corresponding eigenvalues. Each eigenvector will be scaled so the largest component will have |real part|+|imag. part|=1.
If jobvr='N', vr is not referenced.
13: ldvr Integer Input
On entry: the first dimension of the array vr as declared in the (sub)program from which f08wnf is called.
Constraints:
  • if jobvr='V', ldvr max(1,n) ;
  • otherwise ldvr1.
14: work(max(1,lwork)) Complex (Kind=nag_wp) array Workspace
On exit: if info=0, the real part of work(1) contains the minimum value of lwork required for optimal performance.
15: lwork Integer Input
On entry: the dimension of the array work as declared in the (sub)program from which f08wnf is called.
If lwork=−1, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued.
Suggested value: for optimal performance, lwork must generally be larger than the minimum; increase workspace by, say, nb×n, where nb is the optimal block size.
Constraint: lworkmax(1,2×n) or lwork=−1.
16: rwork(max(1,8×n)) Real (Kind=nag_wp) array Workspace
17: info Integer Output
On exit: info=0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
info=1,,n
The QZ iteration failed. No eigenvectors have been calculated but alpha and beta should be correct from element value.
info=n+1
The QZ iteration failed with an unexpected error, please contact NAG.
info=n+2
A failure occurred in f08yxf while computing generalized eigenvectors.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for nearby matrices (A+E) and (B+F), where
(E,F) F = O(ε) (A,B) F ,  
and ε is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.
Note:  interpretation of results obtained with the QZ algorithm often requires a clear understanding of the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979), in relation to the significance of small values of αj and βj. It should be noted that if αj and βj are both small for any j, it may be that no reliance can be placed on any of the computed eigenvalues λi=αi/βi. You are recommended to study Wilkinson (1979) and, if in difficulty, to seek expert advice on determining the sensitivity of the eigenvalues to perturbations in the data.

8 Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
f08wnf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f08wnf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n3.
The real analogue of this routine is f08waf.

10 Example

This example finds all the eigenvalues and right eigenvectors of the matrix pair (A,B), where
A = ( -21.10-22.50i 53.50-50.50i -34.50+127.50i 7.50+00.50i -0.46-07.78i -3.50-37.50i -15.50+058.50i -10.50-01.50i 4.30-05.50i 39.70-17.10i -68.50+012.50i -7.50-03.50i 5.50+04.40i 14.40+43.30i -32.50-046.00i -19.00-32.50i )  
and
B = ( 1.00-5.00i 1.60+1.20i -3.00+0.00i 0.00-1.00i 0.80-0.60i 3.00-5.00i -4.00+3.00i -2.40-3.20i 1.00+0.00i 2.40+1.80i -4.00-5.00i 0.00-3.00i 0.00+1.00i -1.80+2.40i 0.00-4.00i 4.00-5.00i ) .  
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

10.1 Program Text

Program Text (f08wnfe.f90)

10.2 Program Data

Program Data (f08wnfe.d)

10.3 Program Results

Program Results (f08wnfe.r)