Program f08wnfe
! F08WNF Example Program Text
! Mark 28.7 Release. NAG Copyright 2022.
! .. Use Statements ..
Use nag_library, Only: m01daf, m01edf, nag_wp, x02ajf, x04daf, zggev
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6
Complex (Kind=nag_wp), Parameter :: cone = (one,zero)
! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Integer :: i, ifail, info, j, k, lda, ldb, &
ldvr, lwork, n
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), alpha(:), b(:,:), beta(:), &
vr(:,:), work(:)
Complex (Kind=nag_wp) :: dummy(1,1)
Real (Kind=nag_wp), Allocatable :: rwork(:)
Integer, Allocatable :: irank(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, all, max, maxloc, nint, real
! .. Executable Statements ..
Write (nout,*) 'F08WNF Example Program Results'
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
ldvr = n
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),vr(ldvr,n),rwork(8*n))
! Use routine workspace query to get optimal workspace.
lwork = -1
! The NAG name equivalent of zggev is f08wnf
Call zggev('No left vectors','Vectors (right)',n,a,lda,b,ldb,alpha,beta, &
dummy,1,vr,ldvr,dummy,lwork,rwork,info)
! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1,1))))
Allocate (work(lwork))
! Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)
! Solve the generalized eigenvalue problem
! The NAG name equivalent of zggev is f08wnf
Call zggev('No left vectors','Vectors (right)',n,a,lda,b,ldb,alpha,beta, &
dummy,1,vr,ldvr,work,lwork,rwork,info)
If (info>0) Then
Write (nout,*)
Write (nout,99999) 'Failure in ZGGEV. INFO =', info
Else
! Re-normalize the eigenvectors, largest absolute element real (=1)
Do i = 1, n
rwork(1:n) = abs(vr(1:n,i))
k = maxloc(rwork(1:n),1)
scal = cone/vr(k,i)
vr(1:n,i) = vr(1:n,i)*scal
vr(k,i) = cone
End Do
Write (nout,*)
Flush (nout)
If (all(abs(beta(1:n))>x02ajf())) Then
! Reorder eigenvalues by descending absolute value and print
alpha(1:n) = alpha(1:n)/beta(1:n)
rwork(1:n) = abs(alpha(1:n))
Allocate (irank(n))
ifail = 0
Call m01daf(rwork,1,n,'Descending',irank,ifail)
Call m01edf(alpha,1,n,irank,ifail)
ifail = 0
Call x04daf('Gen',' ',1,n,alpha,1,'Eigenvalues:',ifail)
! Reorder eigenvectors accordingly
Do j = 1, n
beta(1:n) = vr(j,1:n)
Call m01edf(beta,1,n,irank,ifail)
vr(j,1:n) = beta(1:n)
End Do
Else
Write (nout,*) &
'Some of the eigenvalues are infinite or undetermined'
Write (nout,*)
Flush (nout)
ifail = 0
Call x04daf('Gen',' ',1,n,alpha,1,'Alpha:',ifail)
Call x04daf('Gen',' ',1,n,beta,1,'Beta:',ifail)
End If
Write (nout,*)
Flush (nout)
ifail = 0
Call x04daf('Gen',' ',n,n,vr,ldvr,'Eigenvectors (columns):',ifail)
End If
99999 Format (1X,A,I4)
End Program f08wnfe