NAG CL Interface
f01kec (complex_gen_matrix_cond_pow)
1
Purpose
f01kec computes an estimate of the relative condition number of the th power (where is real) of a complex by matrix , in the -norm. The principal matrix power is also returned.
2
Specification
void |
f01kec (Integer n,
Complex a[],
Integer pda,
double p,
double *condpa,
NagError *fail) |
|
The function may be called by the names: f01kec or nag_matop_complex_gen_matrix_cond_pow.
3
Description
For a matrix
with no eigenvalues on the closed negative real line,
(
) can be defined as
where
is the principal logarithm of
(the unique logarithm whose spectrum lies in the strip
).
The Fréchet derivative of the matrix
th power of
is the unique linear mapping
such that for any matrix
The derivative describes the first-order effect of perturbations in on the matrix power .
The relative condition number of the matrix
th power can be defined by
where
is the norm of the Fréchet derivative of the matrix power at
.
f01kec uses the algorithms of
Higham and Lin (2011) and
Higham and Lin (2013) to compute
and
. The real number
is expressed as
where
and
. Then
. The integer power
is found using a combination of binary powering and, if necessary, matrix inversion. The fractional power
is computed using a Schur decomposition, a Padé approximant and the scaling and squaring method.
To obtain the estimate of , f01kec first estimates by computing an estimate of a quantity , such that . This requires multiple Fréchet derivatives to be computed. Fréchet derivatives of are obtained by differentiating the Padé approximant. Fréchet derivatives of are then computed using a combination of the chain rule and the product rule for Fréchet derivatives.
If is nonsingular but has negative real eigenvalues f01kec will return a non-principal matrix th power and its condition number.
4
References
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Higham N J and Lin L (2011) A Schur–Padé algorithm for fractional powers of a matrix SIAM J. Matrix Anal. Appl. 32(3) 1056–1078
Higham N J and Lin L (2013) An improved Schur–Padé algorithm for fractional powers of a matrix and their Fréchet derivatives SIAM J. Matrix Anal. Appl. 34(3) 1341–1360
5
Arguments
-
1:
– Integer
Input
-
On entry: , the order of the matrix .
Constraint:
.
-
2:
– Complex
Input/Output
-
Note: the dimension,
dim, of the array
a
must be at least
.
The th element of the matrix is stored in .
On entry: the by matrix .
On exit: the
by
principal matrix
th power,
, unless
NE_NEGATIVE_EIGVAL, in which case a non-principal
th power is returned.
-
3:
– Integer
Input
-
On entry: the stride separating matrix row elements in the array
a.
Constraint:
.
-
4:
– double
Input
-
On entry: the required power of .
-
5:
– double *
Output
-
On exit: if
NE_NOERROR or
NW_SOME_PRECISION_LOSS, an estimate of the relative condition number of the matrix
th power,
. Alternatively, if
NE_RCOND, the absolute condition number of the matrix
th power.
-
6:
– NagError *
Input/Output
-
The NAG error argument (see
Section 7 in the Introduction to the NAG Library CL Interface).
6
Error Indicators and Warnings
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
See
Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_INT
-
On entry, .
Constraint: .
- NE_INT_2
-
On entry, and .
Constraint: .
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
See
Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
- NE_NEGATIVE_EIGVAL
-
has eigenvalues on the negative real line. The principal th power is not defined in this case, so a non-principal power was returned.
- NE_NO_LICENCE
-
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library CL Interface for further information.
- NE_RCOND
-
The relative condition number is infinite. The absolute condition number was returned instead.
- NE_SINGULAR
-
is singular so the th power cannot be computed.
- NW_SOME_PRECISION_LOSS
-
has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.
7
Accuracy
f01kec uses the norm estimation function
f04zdc to produce an estimate
of a quantity
, such that
. For further details on the accuracy of norm estimation, see the documentation for
f04zdc.
For a normal matrix
(for which
), the Schur decomposition is diagonal and the computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues of
and then constructing
using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm. See
Higham and Lin (2011) and
Higham and Lin (2013) for details and further discussion.
8
Parallelism and Performance
f01kec is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f01kec makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The amount of complex allocatable memory required by the algorithm is typically of the order .
The cost of the algorithm is
floating-point operations; see
Higham and Lin (2013).
If the matrix
th power alone is required, without an estimate of the condition number, then
f01fqc should be used. If the Fréchet derivative of the matrix power is required then
f01kfc should be used. The real analogue of this function is
f01jec.
10
Example
This example estimates the relative condition number of the matrix power
, where
and
10.1
Program Text
10.2
Program Data
10.3
Program Results