NAG FL Interface
f01kaf (complex_​gen_​matrix_​cond_​std)

1 Purpose

f01kaf computes an estimate of the absolute condition number of a matrix function f of a complex n by n matrix A in the 1-norm, where f is either the exponential, logarithm, sine, cosine, hyperbolic sine (sinh) or hyperbolic cosine (cosh). The evaluation of the matrix function, fA, is also returned.

2 Specification

Fortran Interface
Subroutine f01kaf ( fun, n, a, lda, conda, norma, normfa, ifail)
Integer, Intent (In) :: n, lda
Integer, Intent (Inout) :: ifail
Real (Kind=nag_wp), Intent (Out) :: conda, norma, normfa
Complex (Kind=nag_wp), Intent (Inout) :: a(lda,*)
Character (*), Intent (In) :: fun
C Header Interface
#include <nag.h>
void  f01kaf_ (const char *fun, const Integer *n, Complex a[], const Integer *lda, double *conda, double *norma, double *normfa, Integer *ifail, const Charlen length_fun)
The routine may be called by the names f01kaf or nagf_matop_complex_gen_matrix_cond_std.

3 Description

The absolute condition number of f at A, condabsf,A is given by the norm of the Fréchet derivative of f, LA, which is defined by
LX := maxE0 LX,E E ,  
where LX,E is the Fréchet derivative in the direction E. LX,E is linear in E and can therefore be written as
vec LX,E = KX vecE ,  
where the vec operator stacks the columns of a matrix into one vector, so that KX is n2×n2. f01kaf computes an estimate γ such that γ KX 1 , where KX 1 n-1 LX 1 , n LX 1 . The relative condition number can then be computed via
cond rel f,A = cond abs f,A A1 fA 1 .  
The algorithm used to find γ is detailed in Section 3.4 of Higham (2008).

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: fun Character(*) Input
On entry: indicates which matrix function will be used.
fun='EXP'
The matrix exponential, eA, will be used.
fun='SIN'
The matrix sine, sinA, will be used.
fun='COS'
The matrix cosine, cosA, will be used.
fun='SINH'
The hyperbolic matrix sine, sinhA, will be used.
fun='COSH'
The hyperbolic matrix cosine, coshA, will be used.
fun='LOG'
The matrix logarithm, logA, will be used.
Constraint: fun='EXP', 'SIN', 'COS', 'SINH', 'COSH' or 'LOG'.
2: n Integer Input
On entry: n, the order of the matrix A.
Constraint: n0.
3: alda* Complex (Kind=nag_wp) array Input/Output
Note: the second dimension of the array a must be at least n.
On entry: the n by n matrix A.
On exit: the n by n matrix, fA.
4: lda Integer Input
On entry: the first dimension of the array a as declared in the (sub)program from which f01kaf is called.
Constraint: ldan.
5: conda Real (Kind=nag_wp) Output
On exit: an estimate of the absolute condition number of f at A.
6: norma Real (Kind=nag_wp) Output
On exit: the 1-norm of A.
7: normfa Real (Kind=nag_wp) Output
On exit: the 1-norm of fA.
8: ifail Integer Input/Output
On entry: ifail must be set to 0, -1 or 1. If you are unfamiliar with this argument you should refer to Section 4 in the Introduction to the NAG Library FL Interface for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry ifail=0 or -1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
ifail=1
An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please contact NAG.
ifail=2
An internal error occurred when evaluating the matrix function fA. You can investigate further by calling f01fcf, f01fjf or f01fkf with the matrix A.
ifail=-1
On entry, fun=value was an illegal value.
ifail=-2
On entry, n<0.
Input argument number value is invalid.
ifail=-4
On entry, argument lda is invalid.
Constraint: ldan.
ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
ifail=-399
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
ifail=-999
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

7 Accuracy

f01kaf uses the norm estimation routine f04zdf to estimate a quantity γ, where γ KX 1 and KX 1 n-1 LX 1 , n LX 1 . For further details on the accuracy of norm estimation, see the documentation for f04zdf.

8 Parallelism and Performance

f01kaf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. In these implementations, this routine may make calls to the user-supplied functions from within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used if you are compiling the user-supplied function and linking the executable in accordance with the instructions in the Users' Note for your implementation.
f01kaf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

Approximately 6n2 of complex allocatable memory is required by the routine, in addition to the memory used by the underlying matrix function routines f01fcf, f01fjf or f01fkf.
f01kaf returns the matrix function fA. This is computed using f01fcf if fun='EXP', f01fjf if fun='LOG' and f01fkf otherwise. If only fA is required, without an estimate of the condition number, then it is far more efficient to use f01fcf, f01fjf or f01fkf directly.
f01jaf can be used to find the condition number of the exponential, logarithm, sine, cosine, sinh or cosh at a real matrix.

10 Example

This example estimates the absolute and relative condition numbers of the matrix sinh function for
A = 0.0+1.0i -1.0+0.0i 1.0+0.0i 2.0+0.0i 2.0+1.0i 0.0-1.0i 0.0+0.0i 1.0+0.0i 0.0+1.0i 0.0+0.0i 1.0+1.0i 0.0+2.0i 1.0+0.0i 2.0+0.0i -2.0+3.0i 0.0+1.0i .  

10.1 Program Text

Program Text (f01kafe.f90)

10.2 Program Data

Program Data (f01kafe.d)

10.3 Program Results

Program Results (f01kafe.r)