NAG FL Interface
f01fkf (complex_gen_matrix_fun_std)
1
Purpose
f01fkf computes the matrix exponential, sine, cosine, sinh or cosh, of a complex by matrix using the Schur–Parlett algorithm.
2
Specification
Fortran Interface
Integer, Intent (In) |
:: |
n, lda |
Integer, Intent (Inout) |
:: |
ifail |
Complex (Kind=nag_wp), Intent (Inout) |
:: |
a(lda,*) |
Character (*), Intent (In) |
:: |
fun |
|
C Header Interface
#include <nag.h>
void |
f01fkf_ (const char *fun, const Integer *n, Complex a[], const Integer *lda, Integer *ifail, const Charlen length_fun) |
|
C++ Header Interface
#include <nag.h> extern "C" {
void |
f01fkf_ (const char *fun, const Integer &n, Complex a[], const Integer &lda, Integer &ifail, const Charlen length_fun) |
}
|
The routine may be called by the names f01fkf or nagf_matop_complex_gen_matrix_fun_std.
3
Description
, where
is either the exponential, sine, cosine, sinh or cosh, is computed using the Schur–Parlett algorithm described in
Higham (2008) and
Davies and Higham (2003).
4
References
Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions SIAM J. Matrix Anal. Appl. 25(2) 464–485
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
5
Arguments
-
1:
– Character(*)
Input
-
On entry: indicates which matrix function will be computed.
- The matrix exponential, , will be computed.
- The matrix sine, , will be computed.
- The matrix cosine, , will be computed.
- The hyperbolic matrix sine, , will be computed.
- The hyperbolic matrix cosine, , will be computed.
Constraint:
, , , or .
-
2:
– Integer
Input
-
On entry: , the order of the matrix .
Constraint:
.
-
3:
– Complex (Kind=nag_wp) array
Input/Output
-
Note: the second dimension of the array
a
must be at least
.
On entry: the by matrix .
On exit: the by matrix, .
-
4:
– Integer
Input
-
On entry: the first dimension of the array
a as declared in the (sub)program from which
f01fkf is called.
Constraint:
.
-
5:
– Integer
Input/Output
-
On entry:
ifail must be set to
,
. If you are unfamiliar with this argument you should refer to
Section 4 in the Introduction to the NAG Library FL Interface for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value
is recommended. If the output of error messages is undesirable, then the value
is recommended. Otherwise, if you are not familiar with this argument, the recommended value is
.
When the value is used it is essential to test the value of ifail on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6
Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
x04aaf).
Errors or warnings detected by the routine:
-
A Taylor series failed to converge.
-
An unexpected internal error occurred when evaluating the function at a point. Please contact
NAG.
-
There was an error whilst reordering the Schur form of .
Note: this failure should not occur and suggests that the routine has been called incorrectly.
-
The routine was unable to compute the Schur decomposition of .
Note: this failure should not occur and suggests that the routine has been called incorrectly.
-
An unexpected internal error occurred. Please contact
NAG.
-
The linear equations to be solved are nearly singular and the Padé approximant used to compute the exponential may have no correct figures.
Note: this failure should not occur and suggests that the routine has been called incorrectly.
-
On entry, was an illegal value.
-
Input argument number is invalid.
-
On entry, argument
lda is invalid.
Constraint:
.
An unexpected error has been triggered by this routine. Please
contact
NAG.
See
Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See
Section 9 in the Introduction to the NAG Library FL Interface for further information.
7
Accuracy
For a normal matrix (for which ), the Schur decomposition is diagonal and the algorithm reduces to evaluating at the eigenvalues of and then constructing using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm.
For further discussion of the Schur–Parlett algorithm see Section 9.4 of
Higham (2008).
8
Parallelism and Performance
f01fkf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f01fkf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The integer allocatable memory required is , and the complex allocatable memory required is approximately .
The cost of the Schur–Parlett algorithm depends on the spectrum of
, but is roughly between
and
floating-point operations; see Algorithm 9.6 of
Higham (2008).
If the matrix exponential is required then it is recommended that
f01fcf be used.
f01fcf uses an algorithm which is, in general, more accurate than the Schur–Parlett algorithm used by
f01fkf.
If estimates of the condition number of the matrix function are required then
f01kaf should be used.
f01ekf can be used to find the matrix exponential, sin, cos, sinh or cosh of a real matrix
.
10
Example
This example finds the matrix sinh of the matrix
10.1
Program Text
10.2
Program Data
10.3
Program Results