This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG FL Interface
D01 (Quad)
Quadrature

D01 (Quad) Chapter Introduction – A description of the Chapter and an overview of the algorithms available.

Routine
Mark of
Introduction

Purpose
d01ahf
Example Text
Example Data
8 nagf_quad_dim1_fin_well
One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands
d01ajf
Example Text
8 nagf_quad_dim1_fin_bad
One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands
d01akf
Example Text
8 nagf_quad_dim1_fin_osc
One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions
d01alf
Example Text
8 nagf_quad_dim1_fin_sing
One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
d01amf
Example Text
8 nagf_quad_dim1_inf
One-dimensional quadrature, adaptive, infinite or semi-infinite interval
d01anf
Example Text
8 nagf_quad_dim1_fin_wtrig
One-dimensional quadrature, adaptive, finite interval, weight function cosωx or sinωx
d01apf
Example Text
8 nagf_quad_dim1_fin_wsing
One-dimensional quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type
d01aqf
Example Text
8 nagf_quad_dim1_fin_wcauchy
One-dimensional quadrature, adaptive, finite interval, weight function 1/x-c, Cauchy principal value (Hilbert transform)
d01arf
Example Text
10 nagf_quad_dim1_indef
One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals
d01asf
Example Text
13 nagf_quad_dim1_inf_wtrig
One-dimensional quadrature, adaptive, semi-infinite interval, weight function cosωx or sinωx
d01atf
Example Text
13 nagf_quad_dim1_fin_bad_vec
One-dimensional quadrature, adaptive, finite interval, variant of d01ajf efficient on vector machines
d01auf
Example Text
13 nagf_quad_dim1_fin_osc_vec
One-dimensional quadrature, adaptive, finite interval, variant of d01akf efficient on vector machines
d01bcf
Example Text
Example Plot
8 nagf_quad_dim1_gauss_wgen
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
d01bdf
Example Text
8 nagf_quad_dim1_fin_smooth
One-dimensional quadrature, non-adaptive, finite interval
d01daf
Example Text
5 nagf_quad_dim2_fin
Two-dimensional quadrature, finite region
d01eaf
Example Text
Example Plot
12 nagf_quad_md_adapt_multi
Multidimensional adaptive quadrature over hyper-rectangle, multiple integrands
d01esf
Example Text
25 nagf_quad_md_sgq_multi_vec
Multi-dimensional quadrature using sparse grids
d01fbf
Example Text
8 nagf_quad_md_gauss
Multidimensional Gaussian quadrature over hyper-rectangle
d01fcf
Example Text
8 nagf_quad_md_adapt
Multidimensional adaptive quadrature over hyper-rectangle
d01fdf
Example Text
10 nagf_quad_md_sphere
Multidimensional quadrature, Sag–Szekeres method, general product region or n-sphere
d01gaf
Example Text
Example Data
5 nagf_quad_dim1_data
One-dimensional quadrature, integration of function defined by data values, Gill–Miller method
d01gbf
Example Text
10 nagf_quad_md_mcarlo
Multidimensional quadrature over hyper-rectangle, Monte Carlo method
d01gcf
Example Text
10 nagf_quad_md_numth
Multidimensional quadrature, general product region, number-theoretic method
d01gdf
Example Text
14 nagf_quad_md_numth_vec
Multidimensional quadrature, general product region, number-theoretic method, variant of d01gcf efficient on vector machines
d01gyf
Example Text
10 nagf_quad_md_numth_coeff_prime
Korobov optimal coefficients for use in d01gcf or d01gdf, when number of points is prime
d01gzf
Example Text
10 nagf_quad_md_numth_coeff_2prime
Korobov optimal coefficients for use in d01gcf or d01gdf, when number of points is product of two primes
d01jaf
Example Text
10 nagf_quad_md_sphere_bad
Multidimensional quadrature over an n-sphere, allowing for badly behaved integrands
d01paf
Example Text
10 nagf_quad_md_simplex
Multidimensional quadrature over an n-simplex
d01raf
Example Text
24 nagf_quad_dim1_gen_vec_multi_rcomm
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
d01rbf 24 (Deprecated) nagf_quad_withdraw_1d_gen_vec_multi_diagnostic
Diagnostic routine for d01raf
d01rcf 24 nagf_quad_dim1_gen_vec_multi_dimreq
Determine required array dimensions for d01raf
d01rgf
Example Text
24 nagf_quad_dim1_fin_gonnet_vec
One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands
d01tbf
Example Text
24 nagf_quad_dim1_gauss_wres
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
d01tdf
Example Text
26 nagf_quad_dim1_gauss_wrec
Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch
d01tef
Example Text
26 nagf_quad_dim1_gauss_recm
Generates recursion coefficients needed by d01tdf to calculate a Gaussian quadrature rule
d01uaf
Example Text
24 nagf_quad_dim1_gauss_vec
One-dimensional Gaussian quadrature, choice of weight functions (vectorized)
d01ubf
Example Text
26 nagf_quad_dim1_inf_exp_wt
Non-automatic routine to evaluate 0exp-x2fx dx
d01zkf 24 nagf_quad_opt_set
Option setting routine
d01zlf 24 nagf_quad_opt_get
Option getting routine