This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG CL Interface
D01 (Quad)
Quadrature

D01 (Quad) Chapter Introduction – A description of the Chapter and an overview of the algorithms available.

Function
Mark of
Introduction

Purpose
d01bdc
Example Text
Example Data
23 nag_quad_dim1_fin_smooth
One-dimensional quadrature, non-adaptive, finite interval
d01dac
Example Text
23 nag_quad_dim2_fin
Two-dimensional quadrature, finite region
d01esc
Example Text
25 nag_quad_md_sgq_multi_vec
Multi-dimensional quadrature using sparse grids
d01fbc
Example Text
23 nag_quad_md_gauss
Multidimensional Gaussian quadrature over hyper-rectangle
d01fdc
Example Text
23 nag_quad_md_sphere
Multidimensional quadrature, Sag–Szekeres method, general product region or n-sphere
d01gac
Example Text
Example Data
2 nag_quad_dim1_data
One-dimensional integration of a function defined by data values only
d01gdc
Example Text
23 nag_quad_md_numth_vec
Multidimensional quadrature, general product region, number-theoretic method
d01gyc
Example Text
23 nag_quad_md_numth_coeff_prime
Korobov optimal coefficients for use in d01gdc, when number of points is prime
d01gzc
Example Text
23 nag_quad_md_numth_coeff_2prime
Korobov optimal coefficients for use in d01gdc, when number of points is product of two primes
d01pac
Example Text
23 nag_quad_md_simplex
Multidimensional quadrature over an n-simplex
d01rac
Example Text
24 nag_quad_dim1_gen_vec_multi_rcomm
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
d01rcc 24 nag_quad_dim1_gen_vec_multi_dimreq
Determine required array dimensions for d01rac
d01rgc
Example Text
24 nag_quad_dim1_fin_gonnet_vec
One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands
d01sjc
Example Text
5 nag_quad_dim1_fin_gen
One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands
d01skc
Example Text
5 nag_quad_dim1_osc
One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions
d01slc
Example Text
5 nag_quad_dim1_fin_brkpts_threadsafe
One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
d01smc
Example Text
5 nag_quad_dim1_quad_inf_1
One-dimensional adaptive quadrature over infinite or semi-infinite interval
d01snc
Example Text
5 nag_quad_dim1_quad_wt_trig_1
One-dimensional adaptive quadrature, finite interval, sine or cosine weight functions
d01spc
Example Text
5 nag_quad_dim1_quad_wt_alglog_1
One-dimensional adaptive quadrature, weight function with end-point singularities of algebraic-logarithmic type
d01sqc
Example Text
5 nag_quad_dim1_quad_wt_cauchy_1
One-dimensional adaptive quadrature, weight function 1/x-c, Cauchy principal value
d01ssc
Example Text
5 nag_quad_dim1_quad_inf_wt_trig_1
One-dimensional adaptive quadrature, semi-infinite interval, sine or cosine weight function
d01tac
Example Text
5 (Deprecated) nag_quad_dim1_gauss_1
One-dimensional Gaussian quadrature, choice of weight functions
d01tbc
Example Text
23 nag_quad_dim1_gauss_wres
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
d01tcc
Example Text
Example Data
Example Plot
23 nag_quad_dim1_gauss_wgen
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
d01tdc
Example Text
26 nag_quad_dim1_gauss_wrec
Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch
d01tec
Example Text
26 nag_quad_dim1_gauss_recm
Generates recursion coefficients needed by d01tdc to calculate a Gaussian quadrature rule
d01uac
Example Text
24 nag_quad_dim1_gauss_vec
One-dimensional Gaussian quadrature, choice of weight functions (vectorized)
d01ubc
Example Text
26 nag_quad_dim1_inf_exp_wt
Non-automatic function to evaluate 0exp-x2fx dx
d01wcc
Example Text
5 nag_quad_multid_quad_adapt_1
Multidimensional adaptive quadrature
d01xbc
Example Text
5 nag_quad_multid_quad_monte_carlo_1
Multidimensional quadrature, using Monte Carlo method
d01zkc 24 nag_quad_opt_set
Option setting function
d01zlc 24 nag_quad_opt_get
Option getting function