D01 (Quad) Chapter Introduction – A description of the Chapter and an overview of the algorithms available.

Function
Mark of
Introduction

Purpose
d01bdc
Example Text
Example Data
d01dac
Example Text
Two-dimensional quadrature, finite region
d01esc
Example Text
Multi-dimensional quadrature using sparse grids
d01fbc
Example Text
Multidimensional Gaussian quadrature over hyper-rectangle
d01fdc
Example Text
Multidimensional quadrature, Sag–Szekeres method, general product region or $n$-sphere
d01gac
Example Text
Example Data
One-dimensional integration of a function defined by data values only
d01gdc
Example Text
Multidimensional quadrature, general product region, number-theoretic method
d01gyc
Example Text
Korobov optimal coefficients for use in d01gdc, when number of points is prime
d01gzc
Example Text
Korobov optimal coefficients for use in d01gdc, when number of points is product of two primes
d01pac
Example Text
Multidimensional quadrature over an $n$-simplex
d01rac
Example Text
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
Determine required array dimensions for d01rac
d01rgc
Example Text
One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands
d01sjc
Example Text
One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands
d01skc
Example Text
One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions
d01slc
Example Text
One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
d01smc
Example Text
One-dimensional adaptive quadrature over infinite or semi-infinite interval
d01snc
Example Text
One-dimensional adaptive quadrature, finite interval, sine or cosine weight functions
d01spc
Example Text
One-dimensional adaptive quadrature, weight function with end-point singularities of algebraic-logarithmic type
d01sqc
Example Text
One-dimensional adaptive quadrature, weight function $1/\left(x-c\right)$, Cauchy principal value
d01ssc
Example Text
One-dimensional adaptive quadrature, semi-infinite interval, sine or cosine weight function
d01tac
Example Text
One-dimensional Gaussian quadrature, choice of weight functions
d01tbc
Example Text
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
d01tcc
Example Text
Example Data
Example Plot
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
d01tdc
Example Text
Calculation of weights and abscissae for Gaussian quadrature rules, method of Golub and Welsch
d01tec
Example Text
Generates recursion coefficients needed by d01tdc to calculate a Gaussian quadrature rule
d01uac
Example Text
One-dimensional Gaussian quadrature, choice of weight functions (vectorized)
d01ubc
Example Text