This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

F06 Chapter Contents (PDF version)
F06 Chapter Introduction
NAG Library Manual

NAG Library Chapter Contents

F06 – Linear Algebra Support Routines

F06 Chapter Introduction

Routine
Name
Mark of
Introduction

Purpose
F06AAF (DROTG) 12 DROTG
nagf_blas_drotg
Generate real plane rotation
F06BAF 12 nagf_blas_drotgc
Generate real plane rotation, storing tangent
F06BCF 12 nagf_blas_dcsg
Recover cosine and sine from given real tangent
F06BEF 12 nagf_blas_drotj
Generate real Jacobi plane rotation
F06BHF 12 nagf_blas_drot2
Apply real similarity rotation to 2 by 2 symmetric matrix
F06BLF 12 nagf_blas_ddiv
Compute quotient of two real scalars, with overflow flag
F06BMF 12 nagf_blas_dnorm
Compute Euclidean norm from scaled form
F06BNF 12 nagf_blas_dpyth
Compute square root of a2+b2, real a and b
F06BPF 12 nagf_blas_deig2
Compute eigenvalue of 2 by 2 real symmetric matrix
F06CAF 12 nagf_blas_zrotgc
Generate complex plane rotation, storing tangent, real cosine
F06CBF 12 nagf_blas_zrotgs
Generate complex plane rotation, storing tangent, real sine
F06CCF 12 nagf_blas_zcsg
Recover cosine and sine from given complex tangent, real cosine
F06CDF 12 nagf_blas_zcsgs
Recover cosine and sine from given complex tangent, real sine
F06CHF 12 nagf_blas_zrot2
Apply complex similarity rotation to 2 by 2 Hermitian matrix
F06CLF 12 nagf_blas_zdiv
Compute quotient of two complex scalars, with overflow flag
F06DBF 12 nagf_blas_iload
Broadcast scalar into integer vector
F06DFF 12 nagf_blas_icopy
Copy integer vector
F06EAF (DDOT) 12 DDOT
nagf_blas_ddot
Dot product of two real vectors
F06ECF (DAXPY) 12 DAXPY
nagf_blas_daxpy
Add scalar times real vector to real vector
F06EDF (DSCAL) 12 DSCAL
nagf_blas_dscal
Multiply real vector by scalar
F06EFF (DCOPY) 12 DCOPY
nagf_blas_dcopy
Copy real vector
F06EGF (DSWAP) 12 DSWAP
nagf_blas_dswap
Swap two real vectors
F06EJF (DNRM2) 12 DNRM2
nagf_blas_dnrm2
Compute Euclidean norm of real vector
F06EKF (DASUM) 12 DASUM
nagf_blas_dasum
Sum absolute values of real vector elements
F06EPF (DROT) 12 DROT
nagf_blas_drot
Apply real plane rotation
F06ERF (DDOTI) 14 DDOTI
nagf_blas_ddoti
Dot product of a real sparse and a full vector
F06ETF (DAXPYI) 14 DAXPYI
nagf_blas_daxpyi
Add scalar times real sparse vector to a full vector
F06EUF (DGTHR) 14 DGTHR
nagf_blas_dgthr
Gather real sparse vector
F06EVF (DGTHRZ) 14 DGTHRZ
nagf_blas_dgthrz
Gather and set to zero real sparse vector
F06EWF (DSCTR) 14 DSCTR
nagf_blas_dsctr
Scatter real sparse vector
F06EXF (DROTI) 14 DROTI
nagf_blas_droti
Apply plane rotation to a real sparse and a full vector
F06FAF 12 nagf_blas_dvcos
Compute cosine of angle between two real vectors
F06FBF 12 nagf_blas_dload
Broadcast scalar into real vector
F06FCF 12 nagf_blas_ddscl
Multiply real vector by diagonal matrix
F06FDF 12 nagf_blas_axpzy
Multiply real vector by scalar, preserving input vector
F06FEF 21 nagf_blas_drscl
Multiply real vector by reciprocal of scalar
F06FGF 12 nagf_blas_dnegv
Negate real vector
F06FJF 12 nagf_blas_dssq
Update Euclidean norm of real vector in scaled form
F06FKF 12 nagf_blas_dnrm2w
Compute weighted Euclidean norm of real vector
F06FLF 12 nagf_blas_darang
Elements of real vector with largest and smallest absolute value
F06FPF 12 nagf_blas_drots
Apply real symmetric plane rotation to two vectors
F06FQF 12 nagf_blas_dsrotg
Generate sequence of real plane rotations
F06FRF 12 nagf_blas_dnhousg
Generate real elementary reflection, NAG style
F06FSF 12 nagf_blas_dlhousg
Generate real elementary reflection, LINPACK style
F06FTF 12 nagf_blas_dnhous
Apply real elementary reflection, NAG style
F06FUF 12 nagf_blas_dlhous
Apply real elementary reflection, LINPACK style
F06GAF (ZDOTU) 12 ZDOTU
nagf_blas_zdotu
Dot product of two complex vectors, unconjugated
F06GBF (ZDOTC) 12 ZDOTC
nagf_blas_zdotc
Dot product of two complex vectors, conjugated
F06GCF (ZAXPY) 12 ZAXPY
nagf_blas_zaxpy
Add scalar times complex vector to complex vector
F06GDF (ZSCAL) 12 ZSCAL
nagf_blas_zscal
Multiply complex vector by complex scalar
F06GFF (ZCOPY) 12 ZCOPY
nagf_blas_zcopy
Copy complex vector
F06GGF (ZSWAP) 12 ZSWAP
nagf_blas_zswap
Swap two complex vectors
F06GRF (ZDOTUI) 14 ZDOTUI
nagf_blas_zdotui
Dot product of a complex sparse and a full vector, unconjugated
F06GSF (ZDOTCI) 14 ZDOTCI
nagf_blas_zdotci
Dot product of a complex sparse and a full vector, conjugated
F06GTF (ZAXPYI) 14 ZAXPYI
nagf_blas_zaxpyi
Add scalar times complex sparse vector to a full vector
F06GUF (ZGTHR) 14 ZGTHR
nagf_blas_zgthr
Gather complex sparse vector
F06GVF (ZGTHRZ) 14 ZGTHRZ
nagf_blas_zgthrz
Gather and set to zero complex sparse vector
F06GWF (ZSCTR) 14 ZSCTR
nagf_blas_zsctr
Scatter complex sparse vector
F06HBF 12 nagf_blas_zload
Broadcast scalar into complex vector
F06HCF 12 nagf_blas_zdscl
Multiply complex vector by complex diagonal matrix
F06HDF 12 nagf_blas_zaxpzy
Multiply complex vector by complex scalar, preserving input vector
F06HGF 12 nagf_blas_znegv
Negate complex vector
F06HMF (ZROT) 21 ZROT
nagf_blas_zrot
Apply plane rotation with real cosine and complex sine
F06HPF 12 nagf_blas_zcrot
Apply complex plane rotation
F06HQF 12 nagf_blas_zsrotg
Generate sequence of complex plane rotations
F06HRF 12 nagf_blas_zhousg
Generate complex elementary reflection
F06HTF 12 nagf_blas_zhous
Apply complex elementary reflection
F06JDF (ZDSCAL) 12 ZDSCAL
nagf_blas_zdscal
Multiply complex vector by real scalar
F06JJF (DZNRM2) 12 DZNRM2
nagf_blas_dznrm2
Compute Euclidean norm of complex vector
F06JKF (DZASUM) 12 DZASUM
nagf_blas_dzasum
Sum absolute values of complex vector elements
F06JLF (IDAMAX) 12 IDAMAX
nagf_blas_idamax
Index, real vector element with largest absolute value
F06JMF (IZAMAX) 12 IZAMAX
nagf_blas_izamax
Index, complex vector element with largest absolute value
F06KCF 12 nagf_blas_zddscl
Multiply complex vector by real diagonal matrix
F06KDF 12 nagf_blas_zdaxpzy
Multiply complex vector by real scalar, preserving input vector
F06KEF 21 nagf_blas_zdrscl
Multiply complex vector by reciprocal of real scalar
F06KFF 12 nagf_blas_zdcopy
Copy real vector to complex vector
F06KJF 12 nagf_blas_dzssq
Update Euclidean norm of complex vector in scaled form
F06KLF 12 nagf_blas_idrank
Last non-negligible element of real vector
F06KPF (ZDROT) 12 ZDROT
nagf_blas_zdrot
Apply real plane rotation to two complex vectors
F06PAF (DGEMV) 12 DGEMV
nagf_blas_dgemv
Matrix-vector product, real rectangular matrix
F06PBF (DGBMV) 12 DGBMV
nagf_blas_dgbmv
Matrix-vector product, real rectangular band matrix
F06PCF (DSYMV) 12 DSYMV
nagf_blas_dsymv
Matrix-vector product, real symmetric matrix
F06PDF (DSBMV) 12 DSBMV
nagf_blas_dsbmv
Matrix-vector product, real symmetric band matrix
F06PEF (DSPMV) 12 DSPMV
nagf_blas_dspmv
Matrix-vector product, real symmetric packed matrix
F06PFF (DTRMV) 12 DTRMV
nagf_blas_dtrmv
Matrix-vector product, real triangular matrix
F06PGF (DTBMV) 12 DTBMV
nagf_blas_dtbmv
Matrix-vector product, real triangular band matrix
F06PHF (DTPMV) 12 DTPMV
nagf_blas_dtpmv
Matrix-vector product, real triangular packed matrix
F06PJF (DTRSV) 12 DTRSV
nagf_blas_dtrsv
System of equations, real triangular matrix
F06PKF (DTBSV) 12 DTBSV
nagf_blas_dtbsv
System of equations, real triangular band matrix
F06PLF (DTPSV) 12 DTPSV
nagf_blas_dtpsv
System of equations, real triangular packed matrix
F06PMF (DGER) 12 DGER
nagf_blas_dger
Rank-1 update, real rectangular matrix
F06PPF (DSYR) 12 DSYR
nagf_blas_dsyr
Rank-1 update, real symmetric matrix
F06PQF (DSPR) 12 DSPR
nagf_blas_dspr
Rank-1 update, real symmetric packed matrix
F06PRF (DSYR2) 12 DSYR2
nagf_blas_dsyr2
Rank-2 update, real symmetric matrix
F06PSF (DSPR2) 12 DSPR2
nagf_blas_dspr2
Rank-2 update, real symmetric packed matrix
F06QFF 13 nagf_blas_dmcopy
Matrix copy, real rectangular or trapezoidal matrix
F06QHF 13 nagf_blas_dmload
Matrix initialization, real rectangular matrix
F06QJF 13 nagf_blas_dgeap
Permute rows or columns, real rectangular matrix, permutations represented by an integer array
F06QKF 13 nagf_blas_dgeapr
Permute rows or columns, real rectangular matrix, permutations represented by a real array
F06QMF 13 nagf_blas_dsysrc
Orthogonal similarity transformation of real symmetric matrix as a sequence of plane rotations
F06QPF 13 nagf_blas_dutr1
QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix
F06QQF 13 nagf_blas_dutupd
QR factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row
F06QRF 13 nagf_blas_duhqr
QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix
F06QSF 13 nagf_blas_dusqr
QR or RQ factorization by sequence of plane rotations, real upper spiked matrix
F06QTF 13 nagf_blas_dutsqr
QR factorization of UP or RQ factorization of PU, U real upper triangular, P a sequence of plane rotations
F06QVF 13 nagf_blas_dutsrh
Compute upper Hessenberg matrix by sequence of plane rotations, real upper triangular matrix
F06QWF 13 nagf_blas_dutsrs
Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
F06QXF 13 nagf_blas_dgesrc
Apply sequence of plane rotations, real rectangular matrix
F06RAF 15 nagf_blas_dlange
1-norm, -norm, Frobenius norm, largest absolute element, real general matrix
F06RBF 15 nagf_blas_dlangb
1-norm, -norm, Frobenius norm, largest absolute element, real band matrix
F06RCF 15 nagf_blas_dlansy
1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix
F06RDF 15 nagf_blas_dlansp
1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage
F06REF 15 nagf_blas_dlansb
1-norm, -norm, Frobenius norm, largest absolute element, real symmetric band matrix
F06RJF 15 nagf_blas_dlantr
1-norm, -norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix
F06RKF 15 nagf_blas_dlantp
1-norm, -norm, Frobenius norm, largest absolute element, real triangular matrix, packed storage
F06RLF 15 nagf_blas_dlantb
1-norm, -norm, Frobenius norm, largest absolute element, real triangular band matrix
F06RMF 15 nagf_blas_dlanhs
1-norm, -norm, Frobenius norm, largest absolute element, real upper Hessenberg matrix
F06RNF 21 nagf_blas_dlangt
1-norm, -norm, Frobenius norm, largest absolute element, real tridiagonal matrix
F06RPF 21 nagf_blas_dlanst
1-norm, -norm, Frobenius norm, largest absolute element, real symmetric tridiagonal matrix
F06SAF (ZGEMV) 12 ZGEMV
nagf_blas_zgemv
Matrix-vector product, complex rectangular matrix
F06SBF (ZGBMV) 12 ZGBMV
nagf_blas_zgbmv
Matrix-vector product, complex rectangular band matrix
F06SCF (ZHEMV) 12 ZHEMV
nagf_blas_zhemv
Matrix-vector product, complex Hermitian matrix
F06SDF (ZHBMV) 12 ZHBMV
nagf_blas_zhbmv
Matrix-vector product, complex Hermitian band matrix
F06SEF (ZHPMV) 12 ZHPMV
nagf_blas_zhpmv
Matrix-vector product, complex Hermitian packed matrix
F06SFF (ZTRMV) 12 ZTRMV
nagf_blas_ztrmv
Matrix-vector product, complex triangular matrix
F06SGF (ZTBMV) 12 ZTBMV
nagf_blas_ztbmv
Matrix-vector product, complex triangular band matrix
F06SHF (ZTPMV) 12 ZTPMV
nagf_blas_ztpmv
Matrix-vector product, complex triangular packed matrix
F06SJF (ZTRSV) 12 ZTRSV
nagf_blas_ztrsv
System of equations, complex triangular matrix
F06SKF (ZTBSV) 12 ZTBSV
nagf_blas_ztbsv
System of equations, complex triangular band matrix
F06SLF (ZTPSV) 12 ZTPSV
nagf_blas_ztpsv
System of equations, complex triangular packed matrix
F06SMF (ZGERU) 12 ZGERU
nagf_blas_zgeru
Rank-1 update, complex rectangular matrix, unconjugated vector
F06SNF (ZGERC) 12 ZGERC
nagf_blas_zgerc
Rank-1 update, complex rectangular matrix, conjugated vector
F06SPF (ZHER) 12 ZHER
nagf_blas_zher
Rank-1 update, complex Hermitian matrix
F06SQF (ZHPR) 12 ZHPR
nagf_blas_zhpr
Rank-1 update, complex Hermitian packed matrix
F06SRF (ZHER2) 12 ZHER2
nagf_blas_zher2
Rank-2 update, complex Hermitian matrix
F06SSF (ZHPR2) 12 ZHPR2
nagf_blas_zhpr2
Rank-2 update, complex Hermitian packed matrix
F06TAF 21 nagf_blas_zsymv
Matrix-vector product, complex symmetric matrix
F06TBF 21 nagf_blas_zsyr
Rank-1 update, complex symmetric matrix
F06TCF 21 nagf_blas_zspmv
Matrix-vector product, complex symmetric packed matrix
F06TDF 21 nagf_blas_zspr
Rank-1 update, complex symmetric packed matrix
F06TFF 13 nagf_blas_zmcopy
Matrix copy, complex rectangular or trapezoidal matrix
F06THF 13 nagf_blas_zmload
Matrix initialization, complex rectangular matrix
F06TMF 13 nagf_blas_zhesrc
Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations
F06TPF 13 nagf_blas_zutr1
QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix
F06TQF 13 nagf_blas_zutupd
QR factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row
F06TRF 13 nagf_blas_zuhqr
QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix
F06TSF 13 nagf_blas_zusqr
QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
F06TTF 13 nagf_blas_zutsqr
QR factorization of UP or RQ factorization of PU, U complex upper triangular, P a sequence of plane rotations
F06TVF 13 nagf_blas_zutsrh
Compute upper Hessenberg matrix by sequence of plane rotations, complex upper triangular matrix
F06TWF 13 nagf_blas_zutsrs
Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix
F06TXF 13 nagf_blas_zgesrc
Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
F06TYF 13 nagf_blas_zgesrs
Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine
F06UAF 15 nagf_blas_zlange
1-norm, -norm, Frobenius norm, largest absolute element, complex general matrix
F06UBF 15 nagf_blas_zlangb
1-norm, -norm, Frobenius norm, largest absolute element, complex band matrix
F06UCF 15 nagf_blas_zlanhe
1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix
F06UDF 15 nagf_blas_zlanhp
1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed storage
F06UEF 15 nagf_blas_zlanhb
1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian band matrix
F06UFF 15 nagf_blas_zlansy
1-norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix
F06UGF 15 nagf_blas_zlansp
1-norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed storage
F06UHF 15 nagf_blas_zlansb
1-norm, -norm, Frobenius norm, largest absolute element, complex symmetric band matrix
F06UJF 15 nagf_blas_zlantr
1-norm, -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular matrix
F06UKF 15 nagf_blas_zlantp
1-norm, -norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage
F06ULF 15 nagf_blas_zlantb
1-norm, -norm, Frobenius norm, largest absolute element, complex triangular band matrix
F06UMF 15 nagf_blas_zlanhs
1-norm, -norm, Frobenius norm, largest absolute element, complex Hessenberg matrix
F06UNF 21 nagf_blas_zlangt
1-norm, -norm, Frobenius norm, largest absolute element, complex tridiagonal matrix
F06UPF 21 nagf_blas_zlanht
1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian tridiagonal matrix
F06VJF 13 nagf_blas_zgeap
Permute rows or columns, complex rectangular matrix, permutations represented by an integer array
F06VKF 13 nagf_blas_zgeapr
Permute rows or columns, complex rectangular matrix, permutations represented by a real array
F06VXF 13 nagf_blas_zsgesr
Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine
F06WAF (DLANSF)
Example Text
Example Data
23 DLANSF
nagf_blas_dlansf
1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, Rectangular Full Packed format
F06WBF (DTFSM)
Example Text
Example Data
23 DTFSM
nagf_blas_dtfsm
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format
F06WCF (DSFRK)
Example Text
Example Data
23 DSFRK
nagf_blas_dsfrk
Rank-k update of a real symmetric matrix, Rectangular Full Packed format
F06WNF (ZLANHF)
Example Text
Example Data
23 ZLANHF
nagf_blas_zlanhf
1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, Rectangular Full Packed format
F06WPF (ZTFSM)
Example Text
Example Data
23 ZTFSM
nagf_blas_ztfsm
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format
F06WQF (ZHFRK)
Example Text
Example Data
23 ZHFRK
nagf_blas_zhfrk
Rank-k update of a complex Hermitian matrix, Rectangular Full Packed format
F06YAF (DGEMM) 14 DGEMM
nagf_blas_dgemm
Matrix-matrix product, two real rectangular matrices
F06YCF (DSYMM) 14 DSYMM
nagf_blas_dsymm
Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
F06YFF (DTRMM) 14 DTRMM
nagf_blas_dtrmm
Matrix-matrix product, one real triangular matrix, one real rectangular matrix
F06YJF (DTRSM) 14 DTRSM
nagf_blas_dtrsm
Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
F06YPF (DSYRK) 14 DSYRK
nagf_blas_dsyrk
Rank-k update of a real symmetric matrix
F06YRF (DSYR2K) 14 DSYR2K
nagf_blas_dsyr2k
Rank-2k update of a real symmetric matrix
F06ZAF (ZGEMM) 14 ZGEMM
nagf_blas_zgemm
Matrix-matrix product, two complex rectangular matrices
F06ZCF (ZHEMM) 14 ZHEMM
nagf_blas_zhemm
Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
F06ZFF (ZTRMM) 14 ZTRMM
nagf_blas_ztrmm
Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
F06ZJF (ZTRSM) 14 ZTRSM
nagf_blas_ztrsm
Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
F06ZPF (ZHERK) 14 ZHERK
nagf_blas_zherk
Rank-k update of a complex Hermitian matrix
F06ZRF (ZHER2K) 14 ZHER2K
nagf_blas_zher2k
Rank-2k update of a complex Hermitian matrix
F06ZTF (ZSYMM) 14 ZSYMM
nagf_blas_zsymm
Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
F06ZUF (ZSYRK) 14 ZSYRK
nagf_blas_zsyrk
Rank-k update of a complex symmetric matrix
F06ZWF (ZSYR2K) 14 ZSYR2K
nagf_blas_zsyr2k
Rank-2k update of a complex symmetric matrix

F06 Chapter Contents (PDF version)
F06 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2015