Routine Name |
Mark of Introduction |
Purpose |
F06AAF (DROTG) | 12 | DROTG nagf_blas_drotg Generate real plane rotation |
F06BAF | 12 | nagf_blas_drotgc Generate real plane rotation, storing tangent |
F06BCF | 12 | nagf_blas_dcsg Recover cosine and sine from given real tangent |
F06BEF | 12 | nagf_blas_drotj Generate real Jacobi plane rotation |
F06BHF | 12 | nagf_blas_drot2 Apply real similarity rotation to 2 by 2 symmetric matrix |
F06BLF | 12 | nagf_blas_ddiv Compute quotient of two real scalars, with overflow flag |
F06BMF | 12 | nagf_blas_dnorm Compute Euclidean norm from scaled form |
F06BNF | 12 | nagf_blas_dpyth Compute square root of , real and |
F06BPF | 12 | nagf_blas_deig2 Compute eigenvalue of 2 by 2 real symmetric matrix |
F06CAF | 12 | nagf_blas_zrotgc Generate complex plane rotation, storing tangent, real cosine |
F06CBF | 12 | nagf_blas_zrotgs Generate complex plane rotation, storing tangent, real sine |
F06CCF | 12 | nagf_blas_zcsg Recover cosine and sine from given complex tangent, real cosine |
F06CDF | 12 | nagf_blas_zcsgs Recover cosine and sine from given complex tangent, real sine |
F06CHF | 12 | nagf_blas_zrot2 Apply complex similarity rotation to 2 by 2 Hermitian matrix |
F06CLF | 12 | nagf_blas_zdiv Compute quotient of two complex scalars, with overflow flag |
F06DBF | 12 | nagf_blas_iload Broadcast scalar into integer vector |
F06DFF | 12 | nagf_blas_icopy Copy integer vector |
F06EAF (DDOT) | 12 | DDOT nagf_blas_ddot Dot product of two real vectors |
F06ECF (DAXPY) | 12 | DAXPY nagf_blas_daxpy Add scalar times real vector to real vector |
F06EDF (DSCAL) | 12 | DSCAL nagf_blas_dscal Multiply real vector by scalar |
F06EFF (DCOPY) | 12 | DCOPY nagf_blas_dcopy Copy real vector |
F06EGF (DSWAP) | 12 | DSWAP nagf_blas_dswap Swap two real vectors |
F06EJF (DNRM2) | 12 | DNRM2 nagf_blas_dnrm2 Compute Euclidean norm of real vector |
F06EKF (DASUM) | 12 | DASUM nagf_blas_dasum Sum absolute values of real vector elements |
F06EPF (DROT) | 12 | DROT nagf_blas_drot Apply real plane rotation |
F06ERF (DDOTI) | 14 | DDOTI nagf_blas_ddoti Dot product of a real sparse and a full vector |
F06ETF (DAXPYI) | 14 | DAXPYI nagf_blas_daxpyi Add scalar times real sparse vector to a full vector |
F06EUF (DGTHR) | 14 | DGTHR nagf_blas_dgthr Gather real sparse vector |
F06EVF (DGTHRZ) | 14 | DGTHRZ nagf_blas_dgthrz Gather and set to zero real sparse vector |
F06EWF (DSCTR) | 14 | DSCTR nagf_blas_dsctr Scatter real sparse vector |
F06EXF (DROTI) | 14 | DROTI nagf_blas_droti Apply plane rotation to a real sparse and a full vector |
F06FAF | 12 | nagf_blas_dvcos Compute cosine of angle between two real vectors |
F06FBF | 12 | nagf_blas_dload Broadcast scalar into real vector |
F06FCF | 12 | nagf_blas_ddscl Multiply real vector by diagonal matrix |
F06FDF | 12 | nagf_blas_axpzy Multiply real vector by scalar, preserving input vector |
F06FEF | 21 | nagf_blas_drscl Multiply real vector by reciprocal of scalar |
F06FGF | 12 | nagf_blas_dnegv Negate real vector |
F06FJF | 12 | nagf_blas_dssq Update Euclidean norm of real vector in scaled form |
F06FKF | 12 | nagf_blas_dnrm2w Compute weighted Euclidean norm of real vector |
F06FLF | 12 | nagf_blas_darang Elements of real vector with largest and smallest absolute value |
F06FPF | 12 | nagf_blas_drots Apply real symmetric plane rotation to two vectors |
F06FQF | 12 | nagf_blas_dsrotg Generate sequence of real plane rotations |
F06FRF | 12 | nagf_blas_dnhousg Generate real elementary reflection, NAG style |
F06FSF | 12 | nagf_blas_dlhousg Generate real elementary reflection, LINPACK style |
F06FTF | 12 | nagf_blas_dnhous Apply real elementary reflection, NAG style |
F06FUF | 12 | nagf_blas_dlhous Apply real elementary reflection, LINPACK style |
F06GAF (ZDOTU) | 12 | ZDOTU nagf_blas_zdotu Dot product of two complex vectors, unconjugated |
F06GBF (ZDOTC) | 12 | ZDOTC nagf_blas_zdotc Dot product of two complex vectors, conjugated |
F06GCF (ZAXPY) | 12 | ZAXPY nagf_blas_zaxpy Add scalar times complex vector to complex vector |
F06GDF (ZSCAL) | 12 | ZSCAL nagf_blas_zscal Multiply complex vector by complex scalar |
F06GFF (ZCOPY) | 12 | ZCOPY nagf_blas_zcopy Copy complex vector |
F06GGF (ZSWAP) | 12 | ZSWAP nagf_blas_zswap Swap two complex vectors |
F06GRF (ZDOTUI) | 14 | ZDOTUI nagf_blas_zdotui Dot product of a complex sparse and a full vector, unconjugated |
F06GSF (ZDOTCI) | 14 | ZDOTCI nagf_blas_zdotci Dot product of a complex sparse and a full vector, conjugated |
F06GTF (ZAXPYI) | 14 | ZAXPYI nagf_blas_zaxpyi Add scalar times complex sparse vector to a full vector |
F06GUF (ZGTHR) | 14 | ZGTHR nagf_blas_zgthr Gather complex sparse vector |
F06GVF (ZGTHRZ) | 14 | ZGTHRZ nagf_blas_zgthrz Gather and set to zero complex sparse vector |
F06GWF (ZSCTR) | 14 | ZSCTR nagf_blas_zsctr Scatter complex sparse vector |
F06HBF | 12 | nagf_blas_zload Broadcast scalar into complex vector |
F06HCF | 12 | nagf_blas_zdscl Multiply complex vector by complex diagonal matrix |
F06HDF | 12 | nagf_blas_zaxpzy Multiply complex vector by complex scalar, preserving input vector |
F06HGF | 12 | nagf_blas_znegv Negate complex vector |
F06HMF (ZROT) | 21 | ZROT nagf_blas_zrot Apply plane rotation with real cosine and complex sine |
F06HPF | 12 | nagf_blas_zcrot Apply complex plane rotation |
F06HQF | 12 | nagf_blas_zsrotg Generate sequence of complex plane rotations |
F06HRF | 12 | nagf_blas_zhousg Generate complex elementary reflection |
F06HTF | 12 | nagf_blas_zhous Apply complex elementary reflection |
F06JDF (ZDSCAL) | 12 | ZDSCAL nagf_blas_zdscal Multiply complex vector by real scalar |
F06JJF (DZNRM2) | 12 | DZNRM2 nagf_blas_dznrm2 Compute Euclidean norm of complex vector |
F06JKF (DZASUM) | 12 | DZASUM nagf_blas_dzasum Sum absolute values of complex vector elements |
F06JLF (IDAMAX) | 12 | IDAMAX nagf_blas_idamax Index, real vector element with largest absolute value |
F06JMF (IZAMAX) | 12 | IZAMAX nagf_blas_izamax Index, complex vector element with largest absolute value |
F06KCF | 12 | nagf_blas_zddscl Multiply complex vector by real diagonal matrix |
F06KDF | 12 | nagf_blas_zdaxpzy Multiply complex vector by real scalar, preserving input vector |
F06KEF | 21 | nagf_blas_zdrscl Multiply complex vector by reciprocal of real scalar |
F06KFF | 12 | nagf_blas_zdcopy Copy real vector to complex vector |
F06KJF | 12 | nagf_blas_dzssq Update Euclidean norm of complex vector in scaled form |
F06KLF | 12 | nagf_blas_idrank Last non-negligible element of real vector |
F06KPF (ZDROT) | 12 | ZDROT nagf_blas_zdrot Apply real plane rotation to two complex vectors |
F06PAF (DGEMV) | 12 | DGEMV nagf_blas_dgemv Matrix-vector product, real rectangular matrix |
F06PBF (DGBMV) | 12 | DGBMV nagf_blas_dgbmv Matrix-vector product, real rectangular band matrix |
F06PCF (DSYMV) | 12 | DSYMV nagf_blas_dsymv Matrix-vector product, real symmetric matrix |
F06PDF (DSBMV) | 12 | DSBMV nagf_blas_dsbmv Matrix-vector product, real symmetric band matrix |
F06PEF (DSPMV) | 12 | DSPMV nagf_blas_dspmv Matrix-vector product, real symmetric packed matrix |
F06PFF (DTRMV) | 12 | DTRMV nagf_blas_dtrmv Matrix-vector product, real triangular matrix |
F06PGF (DTBMV) | 12 | DTBMV nagf_blas_dtbmv Matrix-vector product, real triangular band matrix |
F06PHF (DTPMV) | 12 | DTPMV nagf_blas_dtpmv Matrix-vector product, real triangular packed matrix |
F06PJF (DTRSV) | 12 | DTRSV nagf_blas_dtrsv System of equations, real triangular matrix |
F06PKF (DTBSV) | 12 | DTBSV nagf_blas_dtbsv System of equations, real triangular band matrix |
F06PLF (DTPSV) | 12 | DTPSV nagf_blas_dtpsv System of equations, real triangular packed matrix |
F06PMF (DGER) | 12 | DGER nagf_blas_dger Rank-1 update, real rectangular matrix |
F06PPF (DSYR) | 12 | DSYR nagf_blas_dsyr Rank-1 update, real symmetric matrix |
F06PQF (DSPR) | 12 | DSPR nagf_blas_dspr Rank-1 update, real symmetric packed matrix |
F06PRF (DSYR2) | 12 | DSYR2 nagf_blas_dsyr2 Rank-2 update, real symmetric matrix |
F06PSF (DSPR2) | 12 | DSPR2 nagf_blas_dspr2 Rank-2 update, real symmetric packed matrix |
F06QFF | 13 | nagf_blas_dmcopy Matrix copy, real rectangular or trapezoidal matrix |
F06QHF | 13 | nagf_blas_dmload Matrix initialization, real rectangular matrix |
F06QJF | 13 | nagf_blas_dgeap Permute rows or columns, real rectangular matrix, permutations represented by an integer array |
F06QKF | 13 | nagf_blas_dgeapr Permute rows or columns, real rectangular matrix, permutations represented by a real array |
F06QMF | 13 | nagf_blas_dsysrc Orthogonal similarity transformation of real symmetric matrix as a sequence of plane rotations |
F06QPF | 13 | nagf_blas_dutr1 factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix |
F06QQF | 13 | nagf_blas_dutupd factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row |
F06QRF | 13 | nagf_blas_duhqr or factorization by sequence of plane rotations, real upper Hessenberg matrix |
F06QSF | 13 | nagf_blas_dusqr or factorization by sequence of plane rotations, real upper spiked matrix |
F06QTF | 13 | nagf_blas_dutsqr factorization of or factorization of , real upper triangular, a sequence of plane rotations |
F06QVF | 13 | nagf_blas_dutsrh Compute upper Hessenberg matrix by sequence of plane rotations, real upper triangular matrix |
F06QWF | 13 | nagf_blas_dutsrs Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix |
F06QXF | 13 | nagf_blas_dgesrc Apply sequence of plane rotations, real rectangular matrix |
F06RAF | 15 | nagf_blas_dlange -norm, -norm, Frobenius norm, largest absolute element, real general matrix |
F06RBF | 15 | nagf_blas_dlangb -norm, -norm, Frobenius norm, largest absolute element, real band matrix |
F06RCF | 15 | nagf_blas_dlansy -norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix |
F06RDF | 15 | nagf_blas_dlansp -norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage |
F06REF | 15 | nagf_blas_dlansb -norm, -norm, Frobenius norm, largest absolute element, real symmetric band matrix |
F06RJF | 15 | nagf_blas_dlantr -norm, -norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix |
F06RKF | 15 | nagf_blas_dlantp -norm, -norm, Frobenius norm, largest absolute element, real triangular matrix, packed storage |
F06RLF | 15 | nagf_blas_dlantb -norm, -norm, Frobenius norm, largest absolute element, real triangular band matrix |
F06RMF | 15 | nagf_blas_dlanhs -norm, -norm, Frobenius norm, largest absolute element, real upper Hessenberg matrix |
F06RNF | 21 | nagf_blas_dlangt -norm, -norm, Frobenius norm, largest absolute element, real tridiagonal matrix |
F06RPF | 21 | nagf_blas_dlanst -norm, -norm, Frobenius norm, largest absolute element, real symmetric tridiagonal matrix |
F06SAF (ZGEMV) | 12 | ZGEMV nagf_blas_zgemv Matrix-vector product, complex rectangular matrix |
F06SBF (ZGBMV) | 12 | ZGBMV nagf_blas_zgbmv Matrix-vector product, complex rectangular band matrix |
F06SCF (ZHEMV) | 12 | ZHEMV nagf_blas_zhemv Matrix-vector product, complex Hermitian matrix |
F06SDF (ZHBMV) | 12 | ZHBMV nagf_blas_zhbmv Matrix-vector product, complex Hermitian band matrix |
F06SEF (ZHPMV) | 12 | ZHPMV nagf_blas_zhpmv Matrix-vector product, complex Hermitian packed matrix |
F06SFF (ZTRMV) | 12 | ZTRMV nagf_blas_ztrmv Matrix-vector product, complex triangular matrix |
F06SGF (ZTBMV) | 12 | ZTBMV nagf_blas_ztbmv Matrix-vector product, complex triangular band matrix |
F06SHF (ZTPMV) | 12 | ZTPMV nagf_blas_ztpmv Matrix-vector product, complex triangular packed matrix |
F06SJF (ZTRSV) | 12 | ZTRSV nagf_blas_ztrsv System of equations, complex triangular matrix |
F06SKF (ZTBSV) | 12 | ZTBSV nagf_blas_ztbsv System of equations, complex triangular band matrix |
F06SLF (ZTPSV) | 12 | ZTPSV nagf_blas_ztpsv System of equations, complex triangular packed matrix |
F06SMF (ZGERU) | 12 | ZGERU nagf_blas_zgeru Rank-1 update, complex rectangular matrix, unconjugated vector |
F06SNF (ZGERC) | 12 | ZGERC nagf_blas_zgerc Rank-1 update, complex rectangular matrix, conjugated vector |
F06SPF (ZHER) | 12 | ZHER nagf_blas_zher Rank-1 update, complex Hermitian matrix |
F06SQF (ZHPR) | 12 | ZHPR nagf_blas_zhpr Rank-1 update, complex Hermitian packed matrix |
F06SRF (ZHER2) | 12 | ZHER2 nagf_blas_zher2 Rank-2 update, complex Hermitian matrix |
F06SSF (ZHPR2) | 12 | ZHPR2 nagf_blas_zhpr2 Rank-2 update, complex Hermitian packed matrix |
F06TAF | 21 | nagf_blas_zsymv Matrix-vector product, complex symmetric matrix |
F06TBF | 21 | nagf_blas_zsyr Rank-1 update, complex symmetric matrix |
F06TCF | 21 | nagf_blas_zspmv Matrix-vector product, complex symmetric packed matrix |
F06TDF | 21 | nagf_blas_zspr Rank-1 update, complex symmetric packed matrix |
F06TFF | 13 | nagf_blas_zmcopy Matrix copy, complex rectangular or trapezoidal matrix |
F06THF | 13 | nagf_blas_zmload Matrix initialization, complex rectangular matrix |
F06TMF | 13 | nagf_blas_zhesrc Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations |
F06TPF | 13 | nagf_blas_zutr1 factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix |
F06TQF | 13 | nagf_blas_zutupd factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row |
F06TRF | 13 | nagf_blas_zuhqr or factorization by sequence of plane rotations, complex upper Hessenberg matrix |
F06TSF | 13 | nagf_blas_zusqr or factorization by sequence of plane rotations, complex upper spiked matrix |
F06TTF | 13 | nagf_blas_zutsqr factorization of or factorization of , complex upper triangular, a sequence of plane rotations |
F06TVF | 13 | nagf_blas_zutsrh Compute upper Hessenberg matrix by sequence of plane rotations, complex upper triangular matrix |
F06TWF | 13 | nagf_blas_zutsrs Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix |
F06TXF | 13 | nagf_blas_zgesrc Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine |
F06TYF | 13 | nagf_blas_zgesrs Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine |
F06UAF | 15 | nagf_blas_zlange -norm, -norm, Frobenius norm, largest absolute element, complex general matrix |
F06UBF | 15 | nagf_blas_zlangb -norm, -norm, Frobenius norm, largest absolute element, complex band matrix |
F06UCF | 15 | nagf_blas_zlanhe -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix |
F06UDF | 15 | nagf_blas_zlanhp -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed storage |
F06UEF | 15 | nagf_blas_zlanhb -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian band matrix |
F06UFF | 15 | nagf_blas_zlansy -norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix |
F06UGF | 15 | nagf_blas_zlansp -norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed storage |
F06UHF | 15 | nagf_blas_zlansb -norm, -norm, Frobenius norm, largest absolute element, complex symmetric band matrix |
F06UJF | 15 | nagf_blas_zlantr -norm, -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular matrix |
F06UKF | 15 | nagf_blas_zlantp -norm, -norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage |
F06ULF | 15 | nagf_blas_zlantb -norm, -norm, Frobenius norm, largest absolute element, complex triangular band matrix |
F06UMF | 15 | nagf_blas_zlanhs -norm, -norm, Frobenius norm, largest absolute element, complex Hessenberg matrix |
F06UNF | 21 | nagf_blas_zlangt -norm, -norm, Frobenius norm, largest absolute element, complex tridiagonal matrix |
F06UPF | 21 | nagf_blas_zlanht -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian tridiagonal matrix |
F06VJF | 13 | nagf_blas_zgeap Permute rows or columns, complex rectangular matrix, permutations represented by an integer array |
F06VKF | 13 | nagf_blas_zgeapr Permute rows or columns, complex rectangular matrix, permutations represented by a real array |
F06VXF | 13 | nagf_blas_zsgesr Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine |
F06WAF (DLANSF)
Example Text Example Data |
23 | DLANSF nagf_blas_dlansf 1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, Rectangular Full Packed format |
F06WBF (DTFSM)
Example Text Example Data |
23 | DTFSM nagf_blas_dtfsm Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format |
F06WCF (DSFRK)
Example Text Example Data |
23 | DSFRK nagf_blas_dsfrk Rank- update of a real symmetric matrix, Rectangular Full Packed format |
F06WNF (ZLANHF)
Example Text Example Data |
23 | ZLANHF nagf_blas_zlanhf 1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, Rectangular Full Packed format |
F06WPF (ZTFSM)
Example Text Example Data |
23 | ZTFSM nagf_blas_ztfsm Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format |
F06WQF (ZHFRK)
Example Text Example Data |
23 | ZHFRK nagf_blas_zhfrk Rank- update of a complex Hermitian matrix, Rectangular Full Packed format |
F06YAF (DGEMM) | 14 | DGEMM nagf_blas_dgemm Matrix-matrix product, two real rectangular matrices |
F06YCF (DSYMM) | 14 | DSYMM nagf_blas_dsymm Matrix-matrix product, one real symmetric matrix, one real rectangular matrix |
F06YFF (DTRMM) | 14 | DTRMM nagf_blas_dtrmm Matrix-matrix product, one real triangular matrix, one real rectangular matrix |
F06YJF (DTRSM) | 14 | DTRSM nagf_blas_dtrsm Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix |
F06YPF (DSYRK) | 14 | DSYRK nagf_blas_dsyrk Rank- update of a real symmetric matrix |
F06YRF (DSYR2K) | 14 | DSYR2K nagf_blas_dsyr2k Rank- update of a real symmetric matrix |
F06ZAF (ZGEMM) | 14 | ZGEMM nagf_blas_zgemm Matrix-matrix product, two complex rectangular matrices |
F06ZCF (ZHEMM) | 14 | ZHEMM nagf_blas_zhemm Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix |
F06ZFF (ZTRMM) | 14 | ZTRMM nagf_blas_ztrmm Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix |
F06ZJF (ZTRSM) | 14 | ZTRSM nagf_blas_ztrsm Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix |
F06ZPF (ZHERK) | 14 | ZHERK nagf_blas_zherk Rank- update of a complex Hermitian matrix |
F06ZRF (ZHER2K) | 14 | ZHER2K nagf_blas_zher2k Rank- update of a complex Hermitian matrix |
F06ZTF (ZSYMM) | 14 | ZSYMM nagf_blas_zsymm Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix |
F06ZUF (ZSYRK) | 14 | ZSYRK nagf_blas_zsyrk Rank- update of a complex symmetric matrix |
F06ZWF (ZSYR2K) | 14 | ZSYR2K nagf_blas_zsyr2k Rank- update of a complex symmetric matrix |