F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF06EDF (DSCAL)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F06EDF (DSCAL) multiplies a real vector by a real scalar.

## 2  Specification

 SUBROUTINE F06EDF ( N, ALPHA, X, INCX)
 INTEGER N, INCX REAL (KIND=nag_wp) ALPHA, X(*)
The routine may be called by its BLAS name dscal.

## 3  Description

F06EDF (DSCAL) performs the operation
 $x←αx$
where $x$ is an $n$-element real vector scattered with stride INCX, and $\alpha$ is a real scalar.

## 4  References

Lawson C L, Hanson R J, Kincaid D R and Krogh F T (1979) Basic linear algebra supbrograms for Fortran usage ACM Trans. Math. Software 5 308–325

## 5  Parameters

1:     $\mathrm{N}$ – INTEGERInput
On entry: $n$, the number of elements in $x$.
2:     $\mathrm{ALPHA}$ – REAL (KIND=nag_wp)Input
On entry: the scalar $\alpha$.
3:     $\mathrm{X}\left(*\right)$ – REAL (KIND=nag_wp) arrayInput/Output
Note: the dimension of the array X must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{N}}-1\right)×{\mathbf{INCX}}\right)$.
On entry: the $n$-element vector $x$. ${x}_{\mathit{i}}$ must be stored in ${\mathbf{X}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{INCX}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{N}}$.
Intermediate elements of X are not referenced.
On exit: the vector $\alpha x$ stored in the array elements used to supply the original vector $x$.
Intermediate elements of X are unchanged.
4:     $\mathrm{INCX}$ – INTEGERInput
On entry: the increment in the subscripts of X between successive elements of $x$.
Constraint: ${\mathbf{INCX}}>0$.

None.

Not applicable.

Not applicable.