hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zpotrs (f07fs)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zpotrs (f07fs) solves a complex Hermitian positive definite system of linear equations with multiple right-hand sides,
AX=B ,  
where A has been factorized by nag_lapack_zpotrf (f07fr).

Syntax

[b, info] = f07fs(uplo, a, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_zpotrs(uplo, a, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zpotrs (f07fs) is used to solve a complex Hermitian positive definite system of linear equations AX=B, this function must be preceded by a call to nag_lapack_zpotrf (f07fr) which computes the Cholesky factorization of A. The solution X is computed by forward and backward substitution.
If uplo='U', A=UHU, where U is upper triangular; the solution X is computed by solving UHY=B and then UX=Y.
If uplo='L', A=LLH, where L is lower triangular; the solution X is computed by solving LY=B and then LHX=Y.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies how A has been factorized.
uplo='U'
A=UHU, where U is upper triangular.
uplo='L'
A=LLH, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The Cholesky factor of A, as returned by nag_lapack_zpotrf (f07fr).
3:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays a, b and the second dimension of the array a.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides.
Constraint: nrhs_p0.

Output Parameters

1:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
The n by r solution matrix X.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where cn is a modest linear function of n, and ε is the machine precision
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x cncondA,xε  
where condA,x=A-1Ax/xcondA=A-1AκA.
Note that condA,x can be much smaller than condA.
Forward and backward error bounds can be computed by calling nag_lapack_zporfs (f07fv), and an estimate for κA (=κ1A) can be obtained by calling nag_lapack_zpocon (f07fu).

Further Comments

The total number of real floating-point operations is approximately 8n2r.
This function may be followed by a call to nag_lapack_zporfs (f07fv) to refine the solution and return an error estimate.
The real analogue of this function is nag_lapack_dpotrs (f07fe).

Example

This example solves the system of equations AX=B, where
A= 3.23+0.00i 1.51-1.92i 1.90+0.84i 0.42+2.50i 1.51+1.92i 3.58+0.00i -0.23+1.11i -1.18+1.37i 1.90-0.84i -0.23-1.11i 4.09+0.00i 2.33-0.14i 0.42-2.50i -1.18-1.37i 2.33+0.14i 4.29+0.00i  
and
B= 3.93-06.14i 1.48+06.58i 6.17+09.42i 4.65-04.75i -7.17-21.83i -4.91+02.29i 1.99-14.38i 7.64-10.79i .  
Here A is Hermitian positive definite and must first be factorized by nag_lapack_zpotrf (f07fr).
function f07fs_example


fprintf('f07fs example results\n\n');

% Lower triangular part of Hermitian matrix A
uplo = 'Lower';
a = [ 3.23 + 0i,     0    + 0i,     0    + 0i,     0    + 0i;
      1.51 + 1.92i,  3.58 + 0i,     0    + 0i,     0    + 0i;
      1.90 - 0.84i, -0.23 - 1.11i,  4.09 + 0i,     0    + 0i;
      0.42 - 2.50i, -1.18 - 1.37i,  2.33 + 0.14i,  4.29 + 0i];

[L, info] = f07fr( ...
                   uplo, a);

% Rhs
b = [ 3.93 -  6.14i,  1.48 +  6.58i;
      6.17 +  9.42i,  4.65 -  4.75i;
     -7.17 - 21.83i, -4.91 +  2.29i;
      1.99 - 14.38i,  7.64 - 10.79i];

% Solve AX = B
[x, info] = f07fs( ...
                   uplo, L, b);

disp('Solution(s)');
disp(x);


f07fs example results

Solution(s)
   1.0000 - 1.0000i  -1.0000 + 2.0000i
  -0.0000 + 3.0000i   3.0000 - 4.0000i
  -4.0000 - 5.0000i  -2.0000 + 3.0000i
   2.0000 + 1.0000i   4.0000 - 5.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015