hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zpotrf (f07fr)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zpotrf (f07fr) computes the Cholesky factorization of a complex Hermitian positive definite matrix.

Syntax

[a, info] = f07fr(uplo, a, 'n', n)
[a, info] = nag_lapack_zpotrf(uplo, a, 'n', n)

Description

nag_lapack_zpotrf (f07fr) forms the Cholesky factorization of a complex Hermitian positive definite matrix A either as A=UHU if uplo='U' or A=LLH if uplo='L', where U is an upper triangular matrix and L is lower triangular.

References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
uplo='U'
The upper triangular part of A is stored and A is factorized as UHU, where U is upper triangular.
uplo='L'
The lower triangular part of A is stored and A is factorized as LLH, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The n by n Hermitian positive definite matrix A.
  • If uplo='U', the upper triangular part of a must be stored and the elements of the array below the diagonal are not referenced.
  • If uplo='L', the lower triangular part of a must be stored and the elements of the array above the diagonal are not referenced.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array a and the second dimension of the array a.
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     alda: – complex array
The first dimension of the array a will be max1,n.
The second dimension of the array a will be max1,n.
The upper or lower triangle of A stores the Cholesky factor U or L as specified by uplo.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
   info>0
The leading minor of order _ is not positive definite and the factorization could not be completed. Hence A itself is not positive definite. This may indicate an error in forming the matrix A. To factorize a Hermitian matrix which is not positive definite, call nag_lapack_zhetrf (f07mr) instead.

Accuracy

If uplo='U', the computed factor U is the exact factor of a perturbed matrix A+E, where
EcnεUHU ,  
cn is a modest linear function of n, and ε is the machine precision. If uplo='L', a similar statement holds for the computed factor L. It follows that eijcnεaiiajj.

Further Comments

The total number of real floating-point operations is approximately 43n3.
A call to nag_lapack_zpotrf (f07fr) may be followed by calls to the functions:
The real analogue of this function is nag_lapack_dpotrf (f07fd).

Example

This example computes the Cholesky factorization of the matrix A, where
A= 3.23+0.00i 1.51-1.92i 1.90+0.84i 0.42+2.50i 1.51+1.92i 3.58+0.00i -0.23+1.11i -1.18+1.37i 1.90-0.84i -0.23-1.11i 4.09+0.00i 2.33-0.14i 0.42-2.50i -1.18-1.37i 2.33+0.14i 4.29+0.00i .  
function f07fr_example


fprintf('f07fr example results\n\n');

% Lower triangular part of Hermitian matrix A
uplo = 'Lower';
a = [ 3.23 + 0i,     0    + 0i,     0    + 0i,     0    + 0i;
      1.51 + 1.92i,  3.58 + 0i,     0    + 0i,     0    + 0i;
      1.90 - 0.84i, -0.23 - 1.11i,  4.09 + 0i,     0    + 0i;
      0.42 - 2.50i, -1.18 - 1.37i,  2.33 + 0.14i,  4.29 + 0i];

[L, info] = f07fr( ...
                   uplo, a);

[ifail] = x04da( ...
                 uplo, 'Non-unit', L, 'factor');


f07fr example results

 factor
             1          2          3          4
 1      1.7972
        0.0000

 2      0.8402     1.3164
        1.0683     0.0000

 3      1.0572    -0.4702     1.5604
       -0.4674     0.3131     0.0000

 4      0.2337     0.0834     0.9360     0.6603
       -1.3910     0.0368     0.9900     0.0000

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015