hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dsgesv (f07ac)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dsgesv (f07ac) computes the solution to a real system of linear equations
AX=B ,  
where A is an n by n matrix and X and B are n by r matrices.

Syntax

[a, ipiv, x, iter, info] = f07ac(a, b, 'n', n, 'nrhs_p', nrhs_p)
[a, ipiv, x, iter, info] = nag_lapack_dsgesv(a, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_dsgesv (f07ac) first attempts to factorize the matrix in single precision and use this factorization within an iterative refinement procedure to produce a solution with full double precision accuracy. If the approach fails the method switches to a double precision factorization and solve.
The iterative refinement process is stopped if
iter>itermax ,  
where iter is the number of iterations carried out thus far and itermax is the maximum number of iterations allowed, which is fixed at 30 iterations. The process is also stopped if for all right-hand sides we have
resid < n x A ε ,  
where resid is the -norm of the residual, x is the -norm of the solution, A is the -operator-norm of the matrix A and ε is the machine precision returned by nag_machine_precision (x02aj).
The iterative refinement strategy used by nag_lapack_dsgesv (f07ac) can be more efficient than the corresponding direct full precision algorithm. Since this strategy must perform iterative refinement on each right-hand side, any efficiency gains will reduce as the number of right-hand sides increases. Conversely, as the matrix size increases the cost of these iterative refinements become less significant relative to the cost of factorization. Thus, any efficiency gains will be greatest for a very small number of right-hand sides and for large matrix sizes. The cut-off values for the number of right-hand sides and matrix size, for which the iterative refinement strategy performs better, depends on the relative performance of the reduced and full precision factorization and back-substitution. For now, nag_lapack_dsgesv (f07ac) always attempts the iterative refinement strategy first; you are advised to compare the performance of nag_lapack_dsgesv (f07ac) with that of its full precision counterpart nag_lapack_dgesv (f07aa) to determine whether this strategy is worthwhile for your particular problem dimensions.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Buttari A, Dongarra J, Langou J, Langou J, Luszczek P and Kurzak J (2007) Mixed precision iterative refinement techniques for the solution of dense linear systems International Journal of High Performance Computing Applications
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     alda: – double array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The n by n coefficient matrix A.
2:     bldb: – double array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array b and the second dimension of the array a. (An error is raised if these dimensions are not equal.)
n, the number of linear equations, i.e., the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     alda: – double array
The first dimension of the array a will be max1,n.
The second dimension of the array a will be max1,n.
If iterative refinement has been successfully used (i.e., if info=0 and iter0), then A is unchanged. If double precision factorization has been used (when info=0 and iter<0), A contains the factors L and U from the factorization A=PLU; the unit diagonal elements of L are not stored.
2:     ipivn int64int32nag_int array
If no constraints are violated, the pivot indices that define the permutation matrix P; at the ith step row i of the matrix was interchanged with row ipivi. ipivi=i indicates a row interchange was not required. ipiv corresponds either to the single precision factorization (if info=0 and iter0) or to the double precision factorization (if info=0 and iter<0).
3:     xldx: – double array
The first dimension of the array x will be max1,n.
The second dimension of the array x will be max1,nrhs_p.
If info=0, the n by r solution matrix X.
4:     iter int64int32nag_int scalar
If iter>0, iterative refinement has been successfully used and iter is the number of iterations carried out.
If iter<0, iterative refinement has failed for one of the reasons given below and double precision factorization has been carried out instead.
iter=-1
Taking into account machine parameters, and the values of n and nrhs_p, it is not worth working in single precision.
iter=-2
Overflow of an entry occurred when moving from double to single precision.
iter=-3
An intermediate single precision factorization failed.
iter=-31
The maximum permitted number of iterations was exceeded.
5:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Element _ of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies the equation of the form
A+E x^=b ,  
where
E1 = Oε A1  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^ - x 1 x 1 κA E 1 A 1  
where κA = A-1 1 A 1 , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.

Further Comments

The complex analogue of this function is nag_lapack_zcgesv (f07aq).

Example

This example solves the equations
Ax = b ,  
where A is the general matrix
A = 1.80 2.88 2.05 -0.89 5.25 -2.95 -0.95 -3.80 1.58 -2.69 -2.90 -1.04 -1.11 -0.66 -0.59 0.80   and   b = 9.52 24.35 0.77 -6.22 .  
function f07ac_example


fprintf('f07ac example results\n\n');

a = [ 1.80,  2.88,  2.05, -0.89;
      5.25, -2.95, -0.95, -3.80;
      1.58, -2.69, -2.90, -1.04;
     -1.11, -0.66, -0.59,  0.80];
b = [ 9.52;
     24.35;
      0.77;
     -6.22];

[a, ipiv, x, iter, info] = f07ac( ...
                                  a, b);

disp('Solution');
disp(x');
disp('Pivot indices');
disp(double(ipiv'));


f07ac example results

Solution
    1.0000   -1.0000    3.0000   -5.0000

Pivot indices
     2     2     3     4


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015