hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dgesv (f07aa)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dgesv (f07aa) computes the solution to a real system of linear equations
AX=B ,  
where A is an n by n matrix and X and B are n by r matrices.

Syntax

[a, ipiv, b, info] = f07aa(a, b, 'n', n, 'nrhs_p', nrhs_p)
[a, ipiv, b, info] = nag_lapack_dgesv(a, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_dgesv (f07aa) uses the LU decomposition with partial pivoting and row interchanges to factor A as
A=PLU ,  
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations AX=B.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     alda: – double array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The n by n coefficient matrix A.
2:     bldb: – double array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array b.
n, the number of linear equations, i.e., the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     alda: – double array
The first dimension of the array a will be max1,n.
The second dimension of the array a will be max1,n.
The factors L and U from the factorization A=PLU; the unit diagonal elements of L are not stored.
2:     ipivn int64int32nag_int array
If no constraints are violated, the pivot indices that define the permutation matrix P; at the ith step row i of the matrix was interchanged with row ipivi. ipivi=i indicates a row interchange was not required.
3:     bldb: – double array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
If info=0, the n by r solution matrix X.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Element _ of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies the equation of the form
A+E x^=b ,  
where
E1 = Oε A1  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^ - x 1 x 1 κA E 1 A 1  
where κA = A-1 1 A 1 , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Following the use of nag_lapack_dgesv (f07aa), nag_lapack_dgecon (f07ag) can be used to estimate the condition number of A  and nag_lapack_dgerfs (f07ah) can be used to obtain approximate error bounds. Alternatives to nag_lapack_dgesv (f07aa), which return condition and error estimates directly are nag_linsys_real_square_solve (f04ba) and nag_lapack_dgesvx (f07ab).

Further Comments

The total number of floating-point operations is approximately 23 n3 + 2n2 r , where r  is the number of right-hand sides.
The complex analogue of this function is nag_lapack_zgesv (f07an).

Example

This example solves the equations
Ax = b ,  
where A is the general matrix
A = 1.80 2.88 2.05 -0.89 5.25 -2.95 -0.95 -3.80 1.58 -2.69 -2.90 -1.04 -1.11 -0.66 -0.59 0.80   and   b = 9.52 24.35 0.77 -6.22 .  
Details of the LU factorization of A are also output.
function f07aa_example


fprintf('f07aa example results\n\n');

% Linear system
a = [ 1.80,  2.88,  2.05, -0.89;
      5.25, -2.95, -0.95, -3.80;
      1.58, -2.69, -2.90, -1.04;
     -1.11, -0.66, -0.59,  0.80];
b = [ 9.52;
     24.35;
      0.77;
     -6.22];

% Solve
[LU, ipiv, x, info] = f07aa(a, b);

disp('Solution');
disp(x');
disp('Details of factorization');
disp(LU);
disp('Pivot indices');
disp(double(ipiv'));


f07aa example results

Solution
    1.0000   -1.0000    3.0000   -5.0000

Details of factorization
    5.2500   -2.9500   -0.9500   -3.8000
    0.3429    3.8914    2.3757    0.4129
    0.3010   -0.4631   -1.5139    0.2948
   -0.2114   -0.3299    0.0047    0.1314

Pivot indices
     2     2     3     4


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015