F06 (blas) Chapter Introduction – a description of the Chapter and an overview of the algorithms available
Routine Name |
Mark of Introduction |
Purpose |
f06aaf (drotg) | 12 | DROTG nagf_blas_drotg Generate real plane rotation |
f06baf | 12 | nagf_blas_drotgc Generate real plane rotation, storing tangent |
f06bcf | 12 | nagf_blas_dcsg Recover cosine and sine from given real tangent |
f06bef | 12 | nagf_blas_drotj Generate real Jacobi plane rotation |
f06bhf | 12 | nagf_blas_drot2 Apply real similarity rotation to 2 by 2 symmetric matrix |
f06blf | 12 | nagf_blas_ddiv Compute quotient of two real scalars, with overflow flag |
f06bmf | 12 | nagf_blas_dnorm Compute Euclidean norm from scaled form |
f06bnf | 12 | nagf_blas_dpyth Compute square root of , real and |
f06bpf | 12 | nagf_blas_deig2 Compute eigenvalue of 2 by 2 real symmetric matrix |
f06caf | 12 | nagf_blas_zrotgc Generate complex plane rotation, storing tangent, real cosine |
f06cbf | 12 | nagf_blas_zrotgs Generate complex plane rotation, storing tangent, real sine |
f06ccf | 12 | nagf_blas_zcsg Recover cosine and sine from given complex tangent, real cosine |
f06cdf | 12 | nagf_blas_zcsgs Recover cosine and sine from given complex tangent, real sine |
f06chf | 12 | nagf_blas_zrot2 Apply complex similarity rotation to 2 by 2 Hermitian matrix |
f06clf | 12 | nagf_blas_zdiv Compute quotient of two complex scalars, with overflow flag |
f06dbf | 12 | nagf_blas_iload Broadcast scalar into integer vector |
f06dff | 12 | nagf_blas_icopy Copy integer vector |
f06eaf (ddot) | 12 | DDOT nagf_blas_ddot Dot product of two real vectors |
f06ecf (daxpy) | 12 | DAXPY nagf_blas_daxpy Add scalar times real vector to real vector |
f06edf (dscal) | 12 | DSCAL nagf_blas_dscal Multiply real vector by scalar |
f06eff (dcopy) | 12 | DCOPY nagf_blas_dcopy Copy real vector |
f06egf (dswap) | 12 | DSWAP nagf_blas_dswap Swap two real vectors |
f06ejf (dnrm2) | 12 | DNRM2 nagf_blas_dnrm2 Compute Euclidean norm of real vector |
f06ekf (dasum) | 12 | DASUM nagf_blas_dasum Sum absolute values of real vector elements |
f06epf (drot) | 12 | DROT nagf_blas_drot Apply real plane rotation |
f06erf (ddoti) | 14 | DDOTI nagf_blas_ddoti Dot product of a real sparse and a full vector |
f06etf (daxpyi) | 14 | DAXPYI nagf_blas_daxpyi Add scalar times real sparse vector to a full vector |
f06euf (dgthr) | 14 | DGTHR nagf_blas_dgthr Gather real sparse vector |
f06evf (dgthrz) | 14 | DGTHRZ nagf_blas_dgthrz Gather and set to zero real sparse vector |
f06ewf (dsctr) | 14 | DSCTR nagf_blas_dsctr Scatter real sparse vector |
f06exf (droti) | 14 | DROTI nagf_blas_droti Apply plane rotation to a real sparse and a full vector |
f06faf | 12 | nagf_blas_dvcos Compute cosine of angle between two real vectors |
f06fbf | 12 | nagf_blas_dload Broadcast scalar into real vector |
f06fcf | 12 | nagf_blas_ddscl Multiply real vector by diagonal matrix |
f06fdf | 12 | nagf_blas_axpzy Multiply real vector by scalar, preserving input vector |
f06fef | 21 | nagf_blas_drscl Multiply real vector by reciprocal of scalar |
f06fgf | 12 | nagf_blas_dnegv Negate real vector |
f06fjf | 12 | nagf_blas_dssq Update Euclidean norm of real vector in scaled form |
f06fkf | 12 | nagf_blas_dnrm2w Compute weighted Euclidean norm of real vector |
f06flf | 12 | nagf_blas_darang Elements of real vector with largest and smallest absolute value |
f06fpf | 12 | nagf_blas_drots Apply real symmetric plane rotation to two vectors |
f06fqf | 12 | nagf_blas_dsrotg Generate sequence of real plane rotations |
f06frf | 12 | nagf_blas_dnhousg Generate real elementary reflection, NAG style |
f06fsf | 12 | nagf_blas_dlhousg Generate real elementary reflection, LINPACK style |
f06ftf | 12 | nagf_blas_dnhous Apply real elementary reflection, NAG style |
f06fuf | 12 | nagf_blas_dlhous Apply real elementary reflection, LINPACK style |
f06gaf (zdotu) | 12 | ZDOTU nagf_blas_zdotu Dot product of two complex vectors, unconjugated |
f06gbf (zdotc) | 12 | ZDOTC nagf_blas_zdotc Dot product of two complex vectors, conjugated |
f06gcf (zaxpy) | 12 | ZAXPY nagf_blas_zaxpy Add scalar times complex vector to complex vector |
f06gdf (zscal) | 12 | ZSCAL nagf_blas_zscal Multiply complex vector by complex scalar |
f06gff (zcopy) | 12 | ZCOPY nagf_blas_zcopy Copy complex vector |
f06ggf (zswap) | 12 | ZSWAP nagf_blas_zswap Swap two complex vectors |
f06grf (zdotui) | 14 | ZDOTUI nagf_blas_zdotui Dot product of a complex sparse and a full vector, unconjugated |
f06gsf (zdotci) | 14 | ZDOTCI nagf_blas_zdotci Dot product of a complex sparse and a full vector, conjugated |
f06gtf (zaxpyi) | 14 | ZAXPYI nagf_blas_zaxpyi Add scalar times complex sparse vector to a full vector |
f06guf (zgthr) | 14 | ZGTHR nagf_blas_zgthr Gather complex sparse vector |
f06gvf (zgthrz) | 14 | ZGTHRZ nagf_blas_zgthrz Gather and set to zero complex sparse vector |
f06gwf (zsctr) | 14 | ZSCTR nagf_blas_zsctr Scatter complex sparse vector |
f06hbf | 12 | nagf_blas_zload Broadcast scalar into complex vector |
f06hcf | 12 | nagf_blas_zdscl Multiply complex vector by complex diagonal matrix |
f06hdf | 12 | nagf_blas_zaxpzy Multiply complex vector by complex scalar, preserving input vector |
f06hgf | 12 | nagf_blas_znegv Negate complex vector |
f06hmf (zrot) | 21 | ZROT nagf_blas_zrot Apply plane rotation with real cosine and complex sine |
f06hpf | 12 | nagf_blas_zcrot Apply complex plane rotation |
f06hqf | 12 | nagf_blas_zsrotg Generate sequence of complex plane rotations |
f06hrf | 12 | nagf_blas_zhousg Generate complex elementary reflection |
f06htf | 12 | nagf_blas_zhous Apply complex elementary reflection |
f06jdf (zdscal) | 12 | ZDSCAL nagf_blas_zdscal Multiply complex vector by real scalar |
f06jjf (dznrm2) | 12 | DZNRM2 nagf_blas_dznrm2 Compute Euclidean norm of complex vector |
f06jkf (dzasum) | 12 | DZASUM nagf_blas_dzasum Sum absolute values of complex vector elements |
f06jlf (idamax) | 12 | IDAMAX nagf_blas_idamax Index, real vector element with largest absolute value |
f06jmf (izamax) | 12 | IZAMAX nagf_blas_izamax Index, complex vector element with largest absolute value |
f06kcf | 12 | nagf_blas_zddscl Multiply complex vector by real diagonal matrix |
f06kdf | 12 | nagf_blas_zdaxpzy Multiply complex vector by real scalar, preserving input vector |
f06kef | 21 | nagf_blas_zdrscl Multiply complex vector by reciprocal of real scalar |
f06kff | 12 | nagf_blas_zdcopy Copy real vector to complex vector |
f06kjf | 12 | nagf_blas_dzssq Update Euclidean norm of complex vector in scaled form |
f06klf | 12 | nagf_blas_idrank Last non-negligible element of real vector |
f06kpf (zdrot) | 12 | ZDROT nagf_blas_zdrot Apply real plane rotation to two complex vectors |
f06paf (dgemv) | 12 | DGEMV nagf_blas_dgemv Matrix-vector product, real rectangular matrix |
f06pbf (dgbmv) | 12 | DGBMV nagf_blas_dgbmv Matrix-vector product, real rectangular band matrix |
f06pcf (dsymv) | 12 | DSYMV nagf_blas_dsymv Matrix-vector product, real symmetric matrix |
f06pdf (dsbmv) | 12 | DSBMV nagf_blas_dsbmv Matrix-vector product, real symmetric band matrix |
f06pef (dspmv) | 12 | DSPMV nagf_blas_dspmv Matrix-vector product, real symmetric packed matrix |
f06pff (dtrmv) | 12 | DTRMV nagf_blas_dtrmv Matrix-vector product, real triangular matrix |
f06pgf (dtbmv) | 12 | DTBMV nagf_blas_dtbmv Matrix-vector product, real triangular band matrix |
f06phf (dtpmv) | 12 | DTPMV nagf_blas_dtpmv Matrix-vector product, real triangular packed matrix |
f06pjf (dtrsv) | 12 | DTRSV nagf_blas_dtrsv System of equations, real triangular matrix |
f06pkf (dtbsv) | 12 | DTBSV nagf_blas_dtbsv System of equations, real triangular band matrix |
f06plf (dtpsv) | 12 | DTPSV nagf_blas_dtpsv System of equations, real triangular packed matrix |
f06pmf (dger) | 12 | DGER nagf_blas_dger Rank-1 update, real rectangular matrix |
f06ppf (dsyr) | 12 | DSYR nagf_blas_dsyr Rank-1 update, real symmetric matrix |
f06pqf (dspr) | 12 | DSPR nagf_blas_dspr Rank-1 update, real symmetric packed matrix |
f06prf (dsyr2) | 12 | DSYR2 nagf_blas_dsyr2 Rank-2 update, real symmetric matrix |
f06psf (dspr2) | 12 | DSPR2 nagf_blas_dspr2 Rank-2 update, real symmetric packed matrix |
f06qff | 13 | nagf_blas_dmcopy Matrix copy, real rectangular or trapezoidal matrix |
f06qhf | 13 | nagf_blas_dmload Matrix initialization, real rectangular matrix |
f06qjf | 13 | nagf_blas_dgeap Permute rows or columns, real rectangular matrix, permutations represented by an integer array |
f06qkf | 13 | nagf_blas_dgeapr Permute rows or columns, real rectangular matrix, permutations represented by a real array |
f06qmf | 13 | nagf_blas_dsysrc Orthogonal similarity transformation of real symmetric matrix as a sequence of plane rotations |
f06qpf | 13 | nagf_blas_dutr1 factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix |
f06qqf | 13 | nagf_blas_dutupd factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row |
f06qrf | 13 | nagf_blas_duhqr or factorization by sequence of plane rotations, real upper Hessenberg matrix |
f06qsf | 13 | nagf_blas_dusqr or factorization by sequence of plane rotations, real upper spiked matrix |
f06qtf | 13 | nagf_blas_dutsqr factorization of or factorization of , real upper triangular, a sequence of plane rotations |
f06qvf | 13 | nagf_blas_dutsrh Compute upper Hessenberg matrix by sequence of plane rotations, real upper triangular matrix |
f06qwf | 13 | nagf_blas_dutsrs Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix |
f06qxf | 13 | nagf_blas_dgesrc Apply sequence of plane rotations, real rectangular matrix |
f06raf | 15 | nagf_blas_dlange -norm, -norm, Frobenius norm, largest absolute element, real general matrix |
f06rbf | 15 | nagf_blas_dlangb -norm, -norm, Frobenius norm, largest absolute element, real band matrix |
f06rcf | 15 | nagf_blas_dlansy -norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix |
f06rdf | 15 | nagf_blas_dlansp -norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage |
f06ref | 15 | nagf_blas_dlansb -norm, -norm, Frobenius norm, largest absolute element, real symmetric band matrix |
f06rjf | 15 | nagf_blas_dlantr -norm, -norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix |
f06rkf | 15 | nagf_blas_dlantp -norm, -norm, Frobenius norm, largest absolute element, real triangular matrix, packed storage |
f06rlf | 15 | nagf_blas_dlantb -norm, -norm, Frobenius norm, largest absolute element, real triangular band matrix |
f06rmf | 15 | nagf_blas_dlanhs -norm, -norm, Frobenius norm, largest absolute element, real upper Hessenberg matrix |
f06rnf | 21 | nagf_blas_dlangt -norm, -norm, Frobenius norm, largest absolute element, real tridiagonal matrix |
f06rpf | 21 | nagf_blas_dlanst -norm, -norm, Frobenius norm, largest absolute element, real symmetric tridiagonal matrix |
f06saf (zgemv) | 12 | ZGEMV nagf_blas_zgemv Matrix-vector product, complex rectangular matrix |
f06sbf (zgbmv) | 12 | ZGBMV nagf_blas_zgbmv Matrix-vector product, complex rectangular band matrix |
f06scf (zhemv) | 12 | ZHEMV nagf_blas_zhemv Matrix-vector product, complex Hermitian matrix |
f06sdf (zhbmv) | 12 | ZHBMV nagf_blas_zhbmv Matrix-vector product, complex Hermitian band matrix |
f06sef (zhpmv) | 12 | ZHPMV nagf_blas_zhpmv Matrix-vector product, complex Hermitian packed matrix |
f06sff (ztrmv) | 12 | ZTRMV nagf_blas_ztrmv Matrix-vector product, complex triangular matrix |
f06sgf (ztbmv) | 12 | ZTBMV nagf_blas_ztbmv Matrix-vector product, complex triangular band matrix |
f06shf (ztpmv) | 12 | ZTPMV nagf_blas_ztpmv Matrix-vector product, complex triangular packed matrix |
f06sjf (ztrsv) | 12 | ZTRSV nagf_blas_ztrsv System of equations, complex triangular matrix |
f06skf (ztbsv) | 12 | ZTBSV nagf_blas_ztbsv System of equations, complex triangular band matrix |
f06slf (ztpsv) | 12 | ZTPSV nagf_blas_ztpsv System of equations, complex triangular packed matrix |
f06smf (zgeru) | 12 | ZGERU nagf_blas_zgeru Rank-1 update, complex rectangular matrix, unconjugated vector |
f06snf (zgerc) | 12 | ZGERC nagf_blas_zgerc Rank-1 update, complex rectangular matrix, conjugated vector |
f06spf (zher) | 12 | ZHER nagf_blas_zher Rank-1 update, complex Hermitian matrix |
f06sqf (zhpr) | 12 | ZHPR nagf_blas_zhpr Rank-1 update, complex Hermitian packed matrix |
f06srf (zher2) | 12 | ZHER2 nagf_blas_zher2 Rank-2 update, complex Hermitian matrix |
f06ssf (zhpr2) | 12 | ZHPR2 nagf_blas_zhpr2 Rank-2 update, complex Hermitian packed matrix |
f06taf | 21 | nagf_blas_zsymv Matrix-vector product, complex symmetric matrix |
f06tbf | 21 | nagf_blas_zsyr Rank-1 update, complex symmetric matrix |
f06tcf | 21 | nagf_blas_zspmv Matrix-vector product, complex symmetric packed matrix |
f06tdf | 21 | nagf_blas_zspr Rank-1 update, complex symmetric packed matrix |
f06tff | 13 | nagf_blas_zmcopy Matrix copy, complex rectangular or trapezoidal matrix |
f06thf | 13 | nagf_blas_zmload Matrix initialization, complex rectangular matrix |
f06tmf | 13 | nagf_blas_zhesrc Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations |
f06tpf | 13 | nagf_blas_zutr1 factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix |
f06tqf | 13 | nagf_blas_zutupd factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row |
f06trf | 13 | nagf_blas_zuhqr or factorization by sequence of plane rotations, complex upper Hessenberg matrix |
f06tsf | 13 | nagf_blas_zusqr or factorization by sequence of plane rotations, complex upper spiked matrix |
f06ttf | 13 | nagf_blas_zutsqr factorization of or factorization of , complex upper triangular, a sequence of plane rotations |
f06tvf | 13 | nagf_blas_zutsrh Compute upper Hessenberg matrix by sequence of plane rotations, complex upper triangular matrix |
f06twf | 13 | nagf_blas_zutsrs Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix |
f06txf | 13 | nagf_blas_zgesrc Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine |
f06tyf | 13 | nagf_blas_zgesrs Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine |
f06uaf | 15 | nagf_blas_zlange -norm, -norm, Frobenius norm, largest absolute element, complex general matrix |
f06ubf | 15 | nagf_blas_zlangb -norm, -norm, Frobenius norm, largest absolute element, complex band matrix |
f06ucf | 15 | nagf_blas_zlanhe -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix |
f06udf | 15 | nagf_blas_zlanhp -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed storage |
f06uef | 15 | nagf_blas_zlanhb -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian band matrix |
f06uff | 15 | nagf_blas_zlansy -norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix |
f06ugf | 15 | nagf_blas_zlansp -norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed storage |
f06uhf | 15 | nagf_blas_zlansb -norm, -norm, Frobenius norm, largest absolute element, complex symmetric band matrix |
f06ujf | 15 | nagf_blas_zlantr -norm, -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular matrix |
f06ukf | 15 | nagf_blas_zlantp -norm, -norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage |
f06ulf | 15 | nagf_blas_zlantb -norm, -norm, Frobenius norm, largest absolute element, complex triangular band matrix |
f06umf | 15 | nagf_blas_zlanhs -norm, -norm, Frobenius norm, largest absolute element, complex Hessenberg matrix |
f06unf | 21 | nagf_blas_zlangt -norm, -norm, Frobenius norm, largest absolute element, complex tridiagonal matrix |
f06upf | 21 | nagf_blas_zlanht -norm, -norm, Frobenius norm, largest absolute element, complex Hermitian tridiagonal matrix |
f06vjf | 13 | nagf_blas_zgeap Permute rows or columns, complex rectangular matrix, permutations represented by an integer array |
f06vkf | 13 | nagf_blas_zgeapr Permute rows or columns, complex rectangular matrix, permutations represented by a real array |
f06vxf | 13 | nagf_blas_zsgesr Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine |
f06waf (dlansf)
Example Text Example Data |
23 | DLANSF nagf_blas_dlansf 1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, Rectangular Full Packed format |
f06wbf (dtfsm)
Example Text Example Data |
23 | DTFSM nagf_blas_dtfsm Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix, Rectangular Full Packed format |
f06wcf (dsfrk)
Example Text Example Data |
23 | DSFRK nagf_blas_dsfrk Rank- update of a real symmetric matrix, Rectangular Full Packed format |
f06wnf (zlanhf)
Example Text Example Data |
23 | ZLANHF nagf_blas_zlanhf 1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, Rectangular Full Packed format |
f06wpf (ztfsm)
Example Text Example Data |
23 | ZTFSM nagf_blas_ztfsm Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix, Rectangular Full Packed format |
f06wqf (zhfrk)
Example Text Example Data |
23 | ZHFRK nagf_blas_zhfrk Rank- update of a complex Hermitian matrix, Rectangular Full Packed format |
f06yaf (dgemm) | 14 | DGEMM nagf_blas_dgemm Matrix-matrix product, two real rectangular matrices |
f06ycf (dsymm) | 14 | DSYMM nagf_blas_dsymm Matrix-matrix product, one real symmetric matrix, one real rectangular matrix |
f06yff (dtrmm) | 14 | DTRMM nagf_blas_dtrmm Matrix-matrix product, one real triangular matrix, one real rectangular matrix |
f06yjf (dtrsm) | 14 | DTRSM nagf_blas_dtrsm Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix |
f06ypf (dsyrk) | 14 | DSYRK nagf_blas_dsyrk Rank- update of a real symmetric matrix |
f06yrf (dsyr2k) | 14 | DSYR2K nagf_blas_dsyr2k Rank- update of a real symmetric matrix |
f06zaf (zgemm) | 14 | ZGEMM nagf_blas_zgemm Matrix-matrix product, two complex rectangular matrices |
f06zcf (zhemm) | 14 | ZHEMM nagf_blas_zhemm Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix |
f06zff (ztrmm) | 14 | ZTRMM nagf_blas_ztrmm Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix |
f06zjf (ztrsm) | 14 | ZTRSM nagf_blas_ztrsm Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix |
f06zpf (zherk) | 14 | ZHERK nagf_blas_zherk Rank- update of a complex Hermitian matrix |
f06zrf (zher2k) | 14 | ZHER2K nagf_blas_zher2k Rank- update of a complex Hermitian matrix |
f06ztf (zsymm) | 14 | ZSYMM nagf_blas_zsymm Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix |
f06zuf (zsyrk) | 14 | ZSYRK nagf_blas_zsyrk Rank- update of a complex symmetric matrix |
f06zwf (zsyr2k) | 14 | ZSYR2K nagf_blas_zsyr2k Rank- update of a complex symmetric matrix |