NAG Library Routine Document

f06ugf  (zlansp)

 Contents

    1  Purpose
    7  Accuracy
    10  Example

1
Purpose

f06ugf returns, via the function name, the value of the 1-norm, the -norm, the Frobenius norm, or the maximum absolute value of the elements of a complex n by n symmetric matrix, stored in packed form.

2
Specification

Fortran Interface
Function f06ugf ( norm, uplo, n, ap, work)
Real (Kind=nag_wp):: f06ugf
Integer, Intent (In):: n
Real (Kind=nag_wp), Intent (Inout):: work(*)
Complex (Kind=nag_wp), Intent (In):: ap(*)
Character (1), Intent (In):: norm, uplo
C Header Interface
#include nagmk26.h
double  f06ugf_ ( const char *norm, const char *uplo, const Integer *n, const Complex ap[], double work[], const Charlen length_norm, const Charlen length_uplo)

3
Description

None.

4
References

None.

5
Arguments

1:     norm – Character(1)Input
On entry: specifies the value to be returned.
norm='1' or 'O'
The 1-norm.
norm='I'
The -norm (= the 1-norm for a symmetric matrix).
norm='F' or 'E'
The Frobenius (or Euclidean) norm.
norm='M'
The value maxi,jaij (not a norm).
Constraint: norm='1', 'O', 'I', 'F', 'E' or 'M'.
2:     uplo – Character(1)Input
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo='U'
The upper triangular part of A is stored.
uplo='L'
The lower triangular part of A is stored.
Constraint: uplo='U' or 'L'.
3:     n – IntegerInput
On entry: n, the order of the matrix A.
When n=0, f06ugf returns zero.
Constraint: n0.
4:     ap* – Complex (Kind=nag_wp) arrayInput
Note: the dimension of the array ap must be at least n× n+1/2 .
On entry: the n by n symmetric matrix A, packed by columns.
More precisely,
  • if uplo='U', the upper triangle of A must be stored with element Aij in api+jj-1/2 for ij;
  • if uplo='L', the lower triangle of A must be stored with element Aij in api+2n-jj-1/2 for ij.
5:     work* – Real (Kind=nag_wp) arrayWorkspace
Note: the dimension of the array work must be at least max1,n  if norm='1', 'O' or 'I', and at least 1 otherwise.

6
Error Indicators and Warnings

None.

7
Accuracy

Not applicable.

8
Parallelism and Performance

f06ugf is not threaded in any implementation.

9
Further Comments

None.

10
Example

None.
© The Numerical Algorithms Group Ltd, Oxford, UK. 2017