NAG Library Routine Document

f06kdf  (zdaxpzy)

 Contents

    1  Purpose
    7  Accuracy
    10  Example

1
Purpose

f06kdf multiplies a complex vector by a real scalar, preserving the input vector.

2
Specification

Fortran Interface
Subroutine f06kdf ( n, alpha, x, incx, y, incy)
Integer, Intent (In):: n, incx, incy
Real (Kind=nag_wp), Intent (In):: alpha
Complex (Kind=nag_wp), Intent (In):: x(*)
Complex (Kind=nag_wp), Intent (Inout):: y(*)
C Header Interface
#include nagmk26.h
void  f06kdf_ ( const Integer *n, const double *alpha, const Complex x[], const Integer *incx, Complex y[], const Integer *incy)

3
Description

f06kdf performs the operation
yαx  
where x and y are n-element complex vectors, and α is a real scalar scattered with stride incx and incy respectively.

4
References

None.

5
Arguments

1:     n – IntegerInput
On entry: n, the number of elements in x and y.
2:     alpha – Real (Kind=nag_wp)Input
On entry: the scalar α.
3:     x* – Complex (Kind=nag_wp) arrayInput
Note: the dimension of the array x must be at least max1, 1+n-1 ×incx .
On entry: the n-element vector x.
If incx>0, xi must be stored in x1+i-1×incx, for i=1,2,,n.
If incx<0, xi must be stored in x1-n-i×incx, for i=1,2,,n.
Intermediate elements of x are not referenced.
4:     incx – IntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
5:     y* – Complex (Kind=nag_wp) arrayInput/Output
Note: the dimension of the array y must be at least max1, 1+n-1 ×incy .
On entry: if incy1, intermediate elements of y may contain values and will not be referenced; the other elements will be overwritten and need not be set.
On exit: the elements yi of the vector y will be stored in y as follows.
If incy>0, yi will be stored in y1+i-1×incy, for i=1,2,,n.
If incy<0, yi will be stored in y1-n-i×incy, for i=1,2,,n.
Intermediate elements of y are unchanged.
6:     incy – IntegerInput
On entry: the increment in the subscripts of y between successive elements of y.

6
Error Indicators and Warnings

None.

7
Accuracy

Not applicable.

8
Parallelism and Performance

f06kdf is not threaded in any implementation.

9
Further Comments

None.

10
Example

None.
© The Numerical Algorithms Group Ltd, Oxford, UK. 2017