NAG Library Manual, Mark 30.2
Interfaces:
FL
CL
CPP
AD
PY
MB
NAG CL Interface Introduction
F16 (Blast) Chapter Contents
F16 (Blast) Chapter Introduction
f16gh:
FL
CL
CPP
AD
PY
MB
NAG CL Interface
f16ghc (zwaxpby)
Keyword Search:
NAG Library Manual, Mark 30.2
Interfaces:
FL
CL
CPP
AD
PY
MB
NAG CL Interface Introduction
F16 (Blast) Chapter Contents
F16 (Blast) Chapter Introduction
f16gh:
FL
CL
CPP
AD
PY
MB
▸
▿
Contents
1
Purpose
2
Specification
3
Description
4
References
5
Arguments
6
Error Indicators and Warnings
7
Accuracy
8
Parallelism and Performance
9
Further Comments
▸
▿
10
Example
10.1
Program Text
10.2
Program Data
10.3
Program Results
© The Numerical Algorithms Group Ltd. 2024
Settings help
CL Name Style:
Short (
a00aac
)
Long (
impl_details
)
Full (
nag_info_impl_details
)
1
Purpose
f16ghc
computes the sum of two scaled vectors, preserving input, for complex scalars and vectors.
2
Specification
copy
#include <nag.h>
void
f16ghc
(
Integer
n
,
Complex
alpha
,
const Complex
x
[],
Integer
incx
,
Complex
beta
,
const Complex
y
[],
Integer
incy
,
Complex
w
[],
Integer
incw
,
NagError *
fail
)
The function may be called by the names:
f16ghc
,
nag_blast_zwaxpby
or
nag_zwaxpby
.
3
Description
f16ghc
performs the operation
w
←
α
x
+
β
y
,
where
x
and
y
are
n
-element complex vectors, and
α
and
β
are complex scalars.
4
References
Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)
Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard
University of Tennessee, Knoxville, Tennessee
https://www.netlib.org/blas/blast-forum/blas-report.pdf
5
Arguments
1:
n
–
Integer
Input
On entry
:
n
, the number of elements in
x
,
y
and
w
.
Constraint
:
n
≥
0
.
2:
alpha
–
Complex
Input
On entry
: the scalar
α
.
3:
x
[
dim
]
–
const Complex
Input
Note:
the dimension,
dim
, of the array
x
must be at least
max
(
1
,
1
+
(
n
-
1
)
×
|
incx
|
)
.
On entry
: the
n
-element vector
x
.
If
incx
>
0
,
x
i
must be stored in
x
[
(
i
-
1
)
×
incx
]
, for
i
=
1
,
2
,
…
,
n
.
If
incx
<
0
,
x
i
must be stored in
x
[
(
n
-
i
)
×
|
incx
|
]
, for
i
=
1
,
2
,
…
,
n
.
Intermediate elements of
x
are not referenced. If
n
=
0
,
x
is not referenced and may be
NULL
.
4:
incx
–
Integer
Input
On entry
: the increment in the subscripts of
x
between successive elements of
x
.
Constraint
:
incx
≠
0
.
5:
beta
–
Complex
Input
On entry
: the scalar
β
.
6:
y
[
dim
]
–
const Complex
Input
Note:
the dimension,
dim
, of the array
y
must be at least
max
(
1
,
1
+
(
n
-
1
)
×
|
incy
|
)
.
On entry
: the
n
-element vector
y
.
If
incy
>
0
,
y
i
must be stored in
y
[
(
i
-
1
)
×
incy
]
, for
i
=
1
,
2
,
…
,
n
.
If
incy
<
0
,
y
i
must be stored in
y
[
(
n
-
i
)
×
|
incy
|
]
, for
i
=
1
,
2
,
…
,
n
.
Intermediate elements of
y
are not referenced. If
β
=
0.0
or
n
=
0
,
y
is not referenced and may be
NULL
.
7:
incy
–
Integer
Input
On entry
: the increment in the subscripts of
y
between successive elements of
y
.
Constraint
:
incy
≠
0
.
8:
w
[
dim
]
–
Complex
Input/Output
Note:
the dimension,
dim
, of the array
w
must be at least
max
(
1
,
1
+
(
n
-
1
)
×
|
incw
|
)
.
On entry
: if
|
incw
|
≠
1
, intermediate elements of
w
may contain values and will not be referenced; the other elements will be overwritten and need not be set.
On exit
: the elements
w
i
of the vector
w
will be stored in
w
as follows.
If
incw
>
0
,
w
i
is in
w
[
(
i
-
1
)
×
incw
]
, for
i
=
1
,
2
,
…
,
n
.
If
incw
<
0
,
w
i
is in
w
[
(
n
-
i
)
×
|
incw
|
]
, for
i
=
1
,
2
,
…
,
n
.
Intermediate elements of
w
are not referenced.
9:
incw
–
Integer
Input
On entry
: the increment in the subscripts of
w
between successive elements of
w
.
Constraint
:
incw
≠
0
.
10:
fail
–
NagError *
Input/Output
The NAG error argument (see
Section 7
in the Introduction to the NAG Library CL Interface).
6
Error Indicators and Warnings
NE_ALLOC_FAIL
Dynamic memory allocation failed.
See
Section 3.1.2
in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument
⟨
value
⟩
had an illegal value.
NE_INT
On entry,
incw
=
⟨
value
⟩
.
Constraint:
incw
≠
0
.
On entry,
incx
=
⟨
value
⟩
.
Constraint:
incx
≠
0
.
On entry,
incy
=
⟨
value
⟩
.
Constraint:
incy
≠
0
.
On entry,
n
=
⟨
value
⟩
.
Constraint:
n
≥
0
.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See
Section 8
in the Introduction to the NAG Library CL Interface for further information.
7
Accuracy
The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of
Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)
).
8
Parallelism and Performance
Background information to multithreading can be found in the
Multithreading
documentation.
f16ghc
is not threaded in any implementation.
9
Further Comments
None.
10
Example
This example computes the result of a scaled vector accumulation for
α
=
3
+
2
i
,
x
=
(
-
6
+
1.2
i
,
3.7
+
4.5
i
,
-
4
+
2.1
i
)
T
,
β
=
-
i
,
y
=
(
-
5.1
,
6.4
-
5
i
,
-
3
-
2.4
i
)
T
.
x
and
y
, and also the sum vector
w
, are stored in reverse order.
10.1
Program Text
Program Text (f16ghce.c)
10.2
Program Data
Program Data (f16ghce.d)
10.3
Program Results
Program Results (f16ghce.r)
NAG Library Manual, Mark 30.2
Interfaces:
FL
CL
CPP
AD
PY
MB
NAG CL Interface Introduction
F16 (Blast) Chapter Contents
F16 (Blast) Chapter Introduction
f16gh:
FL
CL
CPP
AD
PY
MB
© The Numerical Algorithms Group Ltd. 2024