The routine may be called by the names g08cbf or nagf_nonpar_test_ks_1sample.
3Description
The data consist of a single sample of observations denoted by . Let and represent the sample cumulative distribution function and the theoretical (null) cumulative distribution function respectively at the point where is the th smallest sample observation.
The Kolmogorov–Smirnov test provides a test of the null hypothesis : the data are a random sample of observations from a theoretical distribution specified by you against one of the following alternative hypotheses:
(i): the data cannot be considered to be a random sample from the specified null distribution.
(ii): the data arise from a distribution which dominates the specified null distribution. In practical terms, this would be demonstrated if the values of the sample cumulative distribution function tended to exceed the corresponding values of the theoretical cumulative distribution function .
(iii): the data arise from a distribution which is dominated by the specified null distribution. In practical terms, this would be demonstrated if the values of the theoretical cumulative distribution function tended to exceed the corresponding values of the sample cumulative distribution function .
One of the following test statistics is computed depending on the particular alternative null hypothesis specified (see the description of the argument ntype in Section 5).
For the alternative hypothesis .
– the largest absolute deviation between the sample cumulative distribution function and the theoretical cumulative distribution function. Formally .
For the alternative hypothesis .
– the largest positive deviation between the sample cumulative distribution function and the theoretical cumulative distribution function. Formally for both discrete and continuous null distributions.
For the alternative hypothesis .
– the largest positive deviation between the theoretical cumulative distribution function and the sample cumulative distribution function. Formally if the null distribution is discrete then and if the null distribution is continuous then .
The standardized statistic is also computed where may be or depending on the choice of the alternative hypothesis. This is the standardized value of with no correction for continuity applied and the distribution of converges asymptotically to a limiting distribution, first derived by Kolmogorov (1933), and then tabulated by Smirnov (1948). The asymptotic distributions for the one-sided statistics were obtained by Smirnov (1933).
The probability, under the null hypothesis, of obtaining a value of the test statistic as extreme as that observed, is computed. If an exact method given by Conover (1980), is used. Note that the method used is only exact for continuous theoretical distributions and does not include Conover's modification for discrete distributions. This method computes the one-sided probabilities. The two-sided probabilities are estimated by doubling the one-sided probability. This is a good estimate for small , that is , but it becomes very poor for larger . If then is computed using the Kolmogorov–Smirnov limiting distributions, see Feller (1948), Kendall and Stuart (1973), Kolmogorov (1933), Smirnov (1933) and Smirnov (1948).
4References
Conover W J (1980) Practical Nonparametric Statistics Wiley
Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions Ann. Math. Statist.19 179–181
Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin
Kolmogorov A N (1933) Sulla determinazione empirica di una legge di distribuzione Giornale dell' Istituto Italiano degli Attuari4 83–91
Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill
Smirnov N (1933) Estimate of deviation between empirical distribution functions in two independent samples Bull. Moscow Univ.2(2) 3–16
Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist.19 279–281
5Arguments
1: – IntegerInput
On entry: , the number of observations in the sample.
Constraint:
.
2: – Real (Kind=nag_wp) arrayInput
On entry: the sample observations .
Constraint:
the sample observations supplied must be consistent, in the usual manner, with the null distribution chosen, as specified by the arguments dist and par. For further details see Section 9.
3: – Character(*)Input
On entry: the theoretical (null) distribution from which it is suspected the data may arise.
The uniform distribution over .
The Normal distribution with mean and variance .
The gamma distribution with shape parameter and scale parameter , where the mean .
The beta distribution with shape parameters and , where the mean .
The binomial distribution with the number of trials, , and the probability of a success, .
The exponential distribution with parameter , where the mean .
The Poisson distribution with parameter , where the mean .
The negative binomial distribution with the number of trials, , and the probability of success, .
The generalized Pareto distribution with shape parameter and scale .
Any number of characters may be supplied as the actual parameter, however only the characters, maximum , required to uniquely identify the distribution are referenced.
Constraint:
, , , , , , , or .
4: – Real (Kind=nag_wp) arrayInput/Output
On entry: if , par must contain the known values of the parameter(s) of the null distribution as follows.
If a uniform distribution is used, and must contain the boundaries and respectively.
If a Normal distribution is used, and must contain the mean, , and the variance, , respectively.
If a gamma distribution is used, and must contain the parameters and respectively.
If a beta distribution is used, and must contain the parameters and respectively.
If a binomial distribution is used, and must contain the parameters and respectively.
If an exponential distribution is used, must contain the parameter .
If a Poisson distribution is used, must contain the parameter .
If a negative binomial distribution is used, and must contain the parameters and respectively.
If a generalized Pareto distribution is used, and must contain the parameters and respectively.
If , par need not be set except when the null distribution requested is either the binomial or the negative binomial distribution in which case must contain the parameter .
On exit: if , par is unchanged; if , and or then is estimated from the data; otherwise and are estimated from the data.
On entry: estima must specify whether values of the parameters of the null distribution are known or are to be estimated from the data.
Values of the parameters will be supplied in the array par described above.
Parameters are to be estimated from the data except when the null distribution requested is the binomial distribution or the negative binomial distribution in which case the first parameter, , must be supplied in and only the second parameter, , is estimated from the data.
Constraint:
or .
6: – IntegerInput
On entry: the test statistic to be calculated, i.e., the choice of alternative hypothesis.
Computes , to test against ,
Computes , to test against ,
Computes , to test against .
Constraint:
, or .
7: – Real (Kind=nag_wp)Output
On exit: the Kolmogorov–Smirnov test statistic (, or according to the value of ntype).
8: – Real (Kind=nag_wp)Output
On exit: a standardized value, , of the test statistic, , without any correction for continuity.
9: – Real (Kind=nag_wp)Output
On exit: the probability, , associated with the observed value of where may be or depending on the value of ntype (see Section 3).
10: – Real (Kind=nag_wp) arrayOutput
On exit: the sample observations, , sorted in ascending order.
11: – IntegerInput/Output
On entry: ifail must be set to , or to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value or is recommended. If message printing is undesirable, then the value is recommended. Otherwise, the value is recommended. When the value or is used it is essential to test the value of ifail on exit.
On exit: unless the routine detects an error or a warning has been flagged (see Section 6).
6Error Indicators and Warnings
If on entry or , explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
On entry, . Constraint: .
On entry, was an illegal value.
On entry, . Constraint: , or .
On entry, was an illegal value.
On entry, and . Note that must always be supplied. Constraint: for the binomial distribution, , where , see x02ajf.
On entry, and . Note that must always be supplied. Constraint: for the negative binomial distribution, , where , see x02ajf.
On entry, and ; . Constraint: for the beta distribution, and .
On entry, and ; . Constraint: for the gamma distribution, and .
On entry, and ; . Constraint: for the generalized Pareto distribution with , , for .
On entry, and ; . Constraint: for the uniform distribution, .
On entry, and . Constraint: for the exponential distribution, .
On entry, and . Constraint: for the Poisson distribution, .
On entry, and . Constraint: for the binomial distribution, .
On entry, and . Constraint: for the generalized Pareto distribution, .
On entry, and . Constraint: for the negative binomial distribution, .
On entry, and . Constraint: for the Normal distribution, .
On entry, and at least one observation is illegal. Constraint: , for .
On entry, , , , or and at least one observation is negative. Constraint: , for .
On entry, and at least one observation is illegal. Constraint: , for .
On entry, and all observations are zero or . Constraint: at least one , for .
On entry, and at least one observation is illegal. Constraint: , for .
On entry, or and all observations are zero. Constraint: at least one , for .
On entry, and . The parameter estimates are invalid; the data may not be from the generalized Pareto distribution.
On entry, , , , or , and the whole sample is constant. Thus the variance is zero.
On entry, , , . The variance exceeds 1000000.
On entry, , , . The variance exceeds 1000000.
On entry, and in the computation of the incomplete gamma function by s14baf the convergence of the Taylor series or Legendre continued fraction fails within iterations.
An unexpected error has been triggered by this routine. Please
contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.
7Accuracy
The approximation for , given when , has a relative error of at most % for most cases. The two-sided probability is approximated by doubling the one-sided probability. This is only good for small , i.e., but very poor for large . The error is always on the conservative side, that is the tail probability, , is over estimated.
8Parallelism and Performance
Background information to multithreading can be found in the Multithreading documentation.
g08cbf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
The time taken by g08cbf increases with until at which point it drops and then increases slowly with . The time may also depend on the choice of null distribution and on whether or not the parameters are to be estimated.
The data supplied in the argument x must be consistent with the chosen null distribution as follows:
when , then , for ;
when , then there are no constraints on the 's;
when , then , for ;
when , then , for ;
when , then , for ;
when , then , for ;
when , then , for ;
when , then , for ;
when and , then , for ;
when and , then , for .
10Example
The following example program reads in a set of data consisting of 30 observations. The Kolmogorov–Smirnov test is then applied twice, firstly to test whether the sample is taken from a uniform distribution, , and secondly to test whether the sample is taken from a Normal distribution where the mean and variance are estimated from the data. In both cases we are testing against ; that is, we are doing a two tailed test. The values of d, z and p are printed for each case.