Routine |
Mark of Introduction |
Purpose |
---|---|---|
d02agf | 2 | nagf_ode_bvp_shoot_genpar_intern Ordinary differential equations, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined |
d02bgf | 7 | nagf_ode_ivp_rkm_val_simple Ordinary differential equations, initial value problem, Runge–Kutta–Merson method, until a component attains given value (simple driver) |
d02bhf | 7 | nagf_ode_ivp_rkm_zero_simple Ordinary differential equations, initial value problem, Runge–Kutta–Merson method, until function of solution is zero (simple driver) |
d02bjf | 18 | nagf_ode_ivp_rk_zero_simple Ordinary differential equations, initial value problem, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) |
d02cjf | 13 | nagf_ode_ivp_adams_zero_simple Ordinary differential equations, initial value problem, Adams' method, until function of solution is zero, intermediate output (simple driver) |
d02ejf | 12 | nagf_ode_ivp_bdf_zero_simple Ordinary differential equations, stiff initial value problem, backward differentiation formulae method, until function of solution is zero, intermediate output (simple driver) |
d02gaf | 8 | nagf_ode_bvp_fd_nonlin_fixedbc Ordinary differential equations, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem |
d02gbf | 8 | nagf_ode_bvp_fd_lin_gen Ordinary differential equations, boundary value problem, finite difference technique with deferred correction, general linear problem |
d02haf | 8 | nagf_ode_bvp_shoot_bval Ordinary differential equations, boundary value problem, shooting and matching, boundary values to be determined |
d02hbf | 8 | nagf_ode_bvp_shoot_genpar Ordinary differential equations, boundary value problem, shooting and matching, general parameters to be determined |
d02jaf | 8 | nagf_ode_bvp_coll_nth Ordinary differential equations, boundary value problem, collocation and least squares, single th-order linear equation |
d02jbf | 8 | nagf_ode_bvp_coll_sys Ordinary differential equations, boundary value problem, collocation and least squares, system of first-order linear equations |
d02kaf | 7 | nagf_ode_sl2_reg_finite Second-order Sturm–Liouville problem, regular system, finite range, eigenvalue only |
d02kdf | 7 | nagf_ode_sl2_breaks_vals Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points |
d02kef | 8 | nagf_ode_sl2_breaks_funs Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points |
d02laf | 13 | nagf_ode_ivp_2nd_rkn Second-order ordinary differential equations, initial value problem, Runge–Kutta–Nystrom method |
d02lxf | 13 | nagf_ode_ivp_2nd_rkn_setup Second-order ordinary differential equations, initial value problem, setup for d02laf |
d02lyf | 13 | nagf_ode_ivp_2nd_rkn_diag Second-order ordinary differential equations, initial value problem, diagnostics for d02laf |
d02lzf | 13 | nagf_ode_ivp_2nd_rkn_interp Second-order ordinary differential equations, initial value problem, interpolation for d02laf |
d02mcf | 22 | nagf_ode_dae_dassl_cont Implicit ordinary differential equations/DAEs, initial value problem, DASSL method continuation for d02nef |
d02mvf | 14 | nagf_ode_ivp_stiff_dassl Ordinary differential equations, initial value problem, DASSL method, setup for d02m–n routines |
d02mwf | 22 | nagf_ode_dae_dassl_setup Implicit ordinary differential equations/DAEs, initial value problem, setup for d02nef |
d02mzf | 14 | nagf_ode_ivp_stiff_interp Ordinary differential equations, initial value problem, interpolation for d02m–n routines (all integration methods), natural interpolant |
d02nbf | 12 | nagf_ode_ivp_stiff_exp_fulljac Explicit ordinary differential equations, stiff initial value problem, full Jacobian (comprehensive) |
d02ncf | 12 | nagf_ode_ivp_stiff_exp_bandjac Explicit ordinary differential equations, stiff initial value problem, banded Jacobian (comprehensive) |
d02ndf | 12 | nagf_ode_ivp_stiff_exp_sparjac Explicit ordinary differential equations, stiff initial value problem, sparse Jacobian (comprehensive) |
d02nef | 22 | nagf_ode_dae_dassl_gen Implicit ordinary differential equations/DAEs, initial value problem, DASSL method integrator |
d02ngf | 12 | nagf_ode_ivp_stiff_imp_fulljac Implicit/algebraic ordinary differential equations, stiff initial value problem, full Jacobian (comprehensive) |
d02nhf | 12 | nagf_ode_ivp_stiff_imp_bandjac Implicit/algebraic ordinary differential equations, stiff initial value problem, banded Jacobian (comprehensive) |
d02njf | 12 | nagf_ode_ivp_stiff_imp_sparjac Implicit/algebraic ordinary differential equations, stiff initial value problem, sparse Jacobian (comprehensive) |
d02nmf | 12 | nagf_ode_ivp_stiff_exp_revcom Explicit ordinary differential equations, stiff initial value problem (reverse communication, comprehensive) |
d02nnf | 12 | nagf_ode_ivp_stiff_imp_revcom Implicit/algebraic ordinary differential equations, stiff initial value problem (reverse communication, comprehensive) |
d02npf | 22 | nagf_ode_dae_dassl_linalg Implicit ordinary differential equations/DAEs, initial value problem linear algebra setup routine for d02nef |
d02nrf | 12 | nagf_ode_ivp_stiff_sparjac_enq Ordinary differential equations, initial value problem, for use with d02m–n routines, sparse Jacobian, enquiry routine |
d02nsf | 12 | nagf_ode_ivp_stiff_fulljac_setup Ordinary differential equations, initial value problem, for use with d02m–n routines, full Jacobian, linear algebra set up |
d02ntf | 12 | nagf_ode_ivp_stiff_bandjac_setup Ordinary differential equations, initial value problem, for use with d02m–n routines, banded Jacobian, linear algebra set up |
d02nuf | 12 | nagf_ode_ivp_stiff_sparjac_setup Ordinary differential equations, initial value problem, for use with d02m–n routines, sparse Jacobian, linear algebra set up |
d02nvf | 12 | nagf_ode_ivp_stiff_bdf Ordinary differential equations, initial value problem, backward differentiation formulae method, setup for d02m–n routines |
d02nwf | 12 | nagf_ode_ivp_stiff_blend Ordinary differential equations, initial value problem, Blend method, setup for d02m–n routines |
d02nxf | 12 | nagf_ode_ivp_stiff_sparjac_diag Ordinary differential equations, initial value problem, sparse Jacobian, linear algebra diagnostics, for use with d02m–n routines |
d02nyf | 12 | nagf_ode_ivp_stiff_integ_diag Ordinary differential equations, initial value problem, integrator diagnostics, for use with d02m–n routines |
d02nzf | 12 | nagf_ode_ivp_stiff_contin Ordinary differential equations, initial value problem, setup for continuation calls to integrator, for use with d02m–n routines |
d02pef | 24 | nagf_ode_ivp_rkts_range Ordinary differential equations, initial value problem, Runge–Kutta method, integration over range with output |
d02pff | 24 | nagf_ode_ivp_rkts_onestep Ordinary differential equations, initial value problem, Runge–Kutta method, integration over one step |
d02pgf | 26 | nagf_ode_ivp_rk_step_revcomm Ordinary differential equations, initial value problem, Runge–Kutta method, integration by reverse communication |
d02phf | 26 | nagf_ode_ivp_rk_interp_setup Set up interpolant by reverse communication for solution and derivative evaluations at points within the range of the last integration step taken by d02pgf |
d02pjf | 26 | nagf_ode_ivp_rk_interp_eval Evaluate interpolant, set up using d02pqf, to approximate solution and/or solution derivatives at a point within the range of the last integration step taken by d02pgf |
d02pqf | 24 | nagf_ode_ivp_rkts_setup Ordinary differential equations, initial value problem, setup for d02pef and d02pff |
d02prf | 24 | nagf_ode_ivp_rkts_reset_tend Ordinary differential equations, initial value problem, resets end of range for d02pff |
d02psf | 24 | nagf_ode_ivp_rkts_interp Ordinary differential equations, initial value problem, interpolation for d02pff |
d02ptf | 24 | nagf_ode_ivp_rkts_diag Ordinary differential equations, initial value problem, integration diagnostics for d02pef and d02pff |
d02puf | 24 | nagf_ode_ivp_rkts_errass Ordinary differential equations, initial value problem, error assessment diagnostics for d02pef and d02pff |
d02qff | 13 | nagf_ode_ivp_adams_roots Ordinary differential equations, initial value problem, Adams' method with root-finding (direct communication, comprehensive) |
d02qgf | 13 | nagf_ode_ivp_adams_roots_revcom Ordinary differential equations, initial value problem, Adams' method with root-finding (reverse communication, comprehensive) |
d02qwf | 13 | nagf_ode_ivp_adams_setup Ordinary differential equations, initial value problem, setup for d02qff and d02qgf |
d02qxf | 13 | nagf_ode_ivp_adams_diag Ordinary differential equations, initial value problem, diagnostics for d02qff and d02qgf |
d02qyf | 13 | nagf_ode_ivp_adams_rootdiag Ordinary differential equations, initial value problem, root-finding diagnostics for d02qff and d02qgf |
d02qzf | 13 | nagf_ode_ivp_adams_interp Ordinary differential equations, initial value problem, interpolation for d02qff or d02qgf |
d02raf | 8 | nagf_ode_bvp_fd_nonlin_gen Ordinary differential equations, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility |
d02saf | 8 | nagf_ode_bvp_shoot_genpar_algeq Ordinary differential equations, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined |
d02tgf | 8 | nagf_ode_bvp_coll_nth_comp th-order linear ordinary differential equations, boundary value problem, collocation and least squares |
d02tlf | 25 | nagf_ode_bvp_coll_nlin_solve Ordinary differential equations, general nonlinear boundary value problem, collocation technique (thread safe) |
d02tvf | 17 | nagf_ode_bvp_coll_nlin_setup Ordinary differential equations, general nonlinear boundary value problem, setup for d02tlf |
d02txf | 17 | nagf_ode_bvp_coll_nlin_contin Ordinary differential equations, general nonlinear boundary value problem, continuation facility for d02tlf |
d02tyf | 17 | nagf_ode_bvp_coll_nlin_interp Ordinary differential equations, general nonlinear boundary value problem, interpolation for d02tlf |
d02tzf | 17 | nagf_ode_bvp_coll_nlin_diag Ordinary differential equations, general nonlinear boundary value problem, diagnostics for d02tlf |
d02uaf | 23 | nagf_ode_bvp_ps_lin_coeffs Coefficients of Chebyshev interpolating polynomial from function values on Chebyshev grid |
d02ubf | 23 | nagf_ode_bvp_ps_lin_cgl_vals Function or low-order-derivative values on Chebyshev grid from coefficients of Chebyshev interpolating polynomial |
d02ucf | 23 | nagf_ode_bvp_ps_lin_cgl_grid Chebyshev Gauss–Lobatto grid generation |
d02udf | 23 | nagf_ode_bvp_ps_lin_cgl_deriv Differentiate a function by the FFT using function values on Chebyshev grid |
d02uef | 23 | nagf_ode_bvp_ps_lin_solve Solve linear constant coefficient boundary value problem on Chebyshev grid, Integral formulation |
d02uwf | 23 | nagf_ode_bvp_ps_lin_grid_vals Interpolate a function from Chebyshev grid to uniform grid using barycentric Lagrange interpolation |
d02uyf | 23 | nagf_ode_bvp_ps_lin_quad_weights Clenshaw–Curtis quadrature weights for integration using computed Chebyshev coefficients |
d02uzf | 23 | nagf_ode_bvp_ps_lin_cheb_eval Chebyshev polynomial evaluation, |
d02xjf | 12 | nagf_ode_ivp_stiff_nat_interp Ordinary differential equations, initial value problem, interpolation for d02m–n routines (BLEND and BDF methods only), natural interpolant |
d02xkf | 12 | nagf_ode_ivp_stiff_c1_interp Ordinary differential equations, initial value problem, interpolation for d02m–n routines, interpolant |
d02zaf | 12 | nagf_ode_ivp_stiff_errest Ordinary differential equations, initial value problem, weighted norm of local error estimate for d02m–n routines |