The routine may be called by the names c06prf or nagf_sum_fft_complex_1d_multi_row.
3Description
Given sequences of complex data values , for and , c06prf simultaneously calculates the (forward or backward) discrete Fourier transforms of all the sequences defined by
(Note the scale factor in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required.
A call of c06prf with followed by a call with will restore the original data.
The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in Temperton (1983). Special code is provided for the factors , , and .
4References
Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys.52 1–23
5Arguments
1: – Character(1)Input
On entry: if the forward transform as defined in Section 3 is to be computed, direct must be set equal to 'F'.
If the backward transform is to be computed, direct must be set equal to 'B'.
Constraint:
or .
2: – IntegerInput
On entry: , the number of sequences to be transformed.
Constraint:
.
3: – IntegerInput
On entry: , the number of complex values in each sequence.
Constraint:
.
4: – Complex (Kind=nag_wp) arrayInput/Output
On entry: the complex data must be stored in x as if in a two-dimensional array of dimension ; each of the sequences is stored in a row of each array.
In other words, if the elements of the th sequence to be transformed are denoted by , for , must contain .
On exit: is overwritten by the complex transforms.
5: – Complex (Kind=nag_wp) arrayWorkspace
Note: the dimension of the array work
must be at least
.
The workspace requirements as documented for c06prf may be an overestimate in some implementations.
On exit: the real part of contains the minimum workspace required for the current values of m and n with this implementation.
6: – IntegerInput/Output
On entry: ifail must be set to , or to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value or is recommended. If message printing is undesirable, then the value is recommended. Otherwise, the value is recommended. When the value or is used it is essential to test the value of ifail on exit.
On exit: unless the routine detects an error or a warning has been flagged (see Section 6).
6Error Indicators and Warnings
If on entry or , explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: or .
An internal error has occurred in this routine.
Check the routine call and any array sizes.
If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this routine. Please
contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.
7Accuracy
Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).
8Parallelism and Performance
Background information to multithreading can be found in the Multithreading documentation.
c06prf is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
c06prf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.
9Further Comments
The time taken by c06prf is approximately proportional to , but also depends on the factors of . c06prf is fastest if the only prime factors of are , and , and is particularly slow if is a large prime, or has large prime factors.
10Example
This example reads in sequences of complex data values and prints their discrete Fourier transforms (as computed by c06prf with ). Inverse transforms are then calculated using c06prf with and printed out, showing that the original sequences are restored.