c06lbf computes the inverse Laplace transform of a user-supplied function , defined for complex . The routine uses a modification of Weeks' method which is suitable when has continuous derivatives of all orders. The routine returns the coefficients of an expansion which approximates and can be evaluated for given values of by subsequent calls of c06lcf.
The routine may be called by the names c06lbf or nagf_sum_invlaplace_weeks.
3Description
Given a function of a real variable , its Laplace transform is a function of a complex variable , defined by
Then is the inverse Laplace transform of . The value is referred to as the abscissa of convergence of the Laplace transform; it is the rightmost real part of the singularities of .
c06lbf, along with its companion c06lcf, attempts to solve the following problem:
given a function , compute values of its inverse Laplace transform for specified values of .
The method is a modification of Weeks' method (see Garbow et al. (1988a)), which approximates by a truncated Laguerre expansion:
where is the Laguerre polynomial of degree . This routine computes the coefficients of the above Laguerre expansion; the expansion can then be evaluated for specified by calling c06lcf. You must supply the value of , and also suitable values for and : see Section 9 for guidance.
The method is only suitable when has continuous derivatives of all orders. For such functions the approximation is usually good and inexpensive. The routine will fail with an error exit if the method is not suitable for the supplied function .
The routine is designed to satisfy an accuracy criterion of the form:
where is a user-supplied bound. The error measure on the left-hand side is referred to as the pseudo-relativeerror, or pseudo-error for short. Note that if and is large, the absolute error in may be very large.
Garbow B S, Giunta G, Lyness J N and Murli A (1988a) Software for an implementation of Weeks' method for the inverse laplace transform problem ACM Trans. Math. Software14 163–170
Garbow B S, Giunta G, Lyness J N and Murli A (1988b) Algorithm 662: A Fortran software package for the numerical inversion of the Laplace transform based on Weeks' method ACM Trans. Math. Software14 171–176
5Arguments
1: – Complex (Kind=nag_wp) Function, supplied by the user.External Procedure
f must return the value of the Laplace transform function for a given complex value of .
On entry: the value of for which must be evaluated. The real part of s is greater than .
f must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which c06lbf is called. Arguments denoted as Input must not be changed by this procedure.
Note:f should not return floating-point NaN (Not a Number) or infinity values, since these are not handled by c06lbf. If your code inadvertently does return any NaNs or infinities, c06lbf is likely to produce unexpected results.
2: – Real (Kind=nag_wp)Input
On entry: the abscissa of convergence of the Laplace transform, .
3: – Real (Kind=nag_wp)Input/Output
On entry: the parameter of the Laguerre expansion. If on entry , sigma is reset to .
On exit: the value actually used for , as just described.
4: – Real (Kind=nag_wp)Input/Output
On entry: the parameter of the Laguerre expansion. If on entry , b is reset to .
On exit: the value actually used for , as just described.
5: – Real (Kind=nag_wp)Input
On entry: the required relative pseudo-accuracy, that is, an upper bound on .
6: – IntegerInput
On entry: an upper bound on the number of Laguerre expansion coefficients to be computed. The number of coefficients actually computed is always a power of , so mmax should be a power of ; if mmax is not a power of then the maximum number of coefficients calculated will be the largest power of less than mmax.
Suggested value:
is sufficient for all but a few exceptional cases.
Constraint:
.
7: – IntegerOutput
On exit: the number of Laguerre expansion coefficients actually computed. The number of calls to f is .
8: – Real (Kind=nag_wp) arrayOutput
On exit: the first m elements contain the computed Laguerre expansion coefficients, .
9: – Real (Kind=nag_wp) arrayOutput
On exit: an -component vector of diagnostic information.
Overall estimate of the pseudo-error .
Estimate of the discretization pseudo-error.
Estimate of the truncation pseudo-error.
Estimate of the condition pseudo-error on the basis of minimal noise levels in function values.
, coefficient of a heuristic decay function for the expansion coefficients.
, base of the decay function for the expansion coefficients.
Logarithm of the largest expansion coefficient.
Logarithm of the smallest nonzero expansion coefficient.
The values and returned in and define a decay function constructed by the routine for the purposes of error estimation. It satisfies
10: – IntegerInput/Output
On entry: ifail must be set to , or to set behaviour on detection of an error; these values have no effect when no error is detected.
A value of causes the printing of an error message and program execution will be halted; otherwise program execution continues. A value of means that an error message is printed while a value of means that it is not.
If halting is not appropriate, the value or is recommended. If message printing is undesirable, then the value is recommended. Otherwise, the value is recommended since useful values can be provided in some output arguments even when on exit. When the value or is used it is essential to test the value of ifail on exit.
On exit: unless the routine detects an error or a warning has been flagged (see Section 6).
6Error Indicators and Warnings
If on entry or , explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
Note: in some cases c06lbf may return useful information.
On entry, .
Constraint: .
The estimate of the pseudo-error is slightly larger than epstol. Pseudo-error estimate and .
The round-off error level is larger than epstol. Increasing epstol may help. Pseudo-error estimate and . Changing sigma or b may help. If not, the method should be abandoned.
The decay rate of the coefficients is too small. Increasing mmax may help. . Pseudo-error estimate and . Changing sigma or b may help. If not, the method should be abandoned.
The decay rate of the coefficients is too small and round-off error is such that the required accuracy cannot be obtained. Increasing mmax or epstol may help. . Pseudo-error estimate and . Changing sigma or b may help. If not, the method should be abandoned.
Error bounds cannot be predicted. Check sigma0. . Changing sigma or b may help. If not, the method should be abandoned.
An unexpected error has been triggered by this routine. Please
contact NAG.
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.
7Accuracy
The error estimate returned in has been found in practice to be a highly reliable bound on the pseudo-error .
8Parallelism and Performance
Background information to multithreading can be found in the Multithreading documentation.
c06lbf is not threaded in any implementation.
9Further Comments
9.1The Role of
Nearly all techniques for inversion of the Laplace transform require you to supply the value of , the convergence abscissa, or else an upper bound on . For this routine, one of the reasons for having to supply is that the argument must be greater than ; otherwise the series for will not converge.
If you do not know the value of , you must be prepared for significant preliminary effort, either in experimenting with the method and obtaining chaotic results, or in attempting to locate the rightmost singularity of .
The value of is also relevant in defining a natural accuracy criterion. For large , is of uniform numerical order , so a natural measure of relative accuracy of the approximation is:
c06lbf uses the supplied value of only in determining the values of and (see Sections 9.2 and 9.3); thereafter it bases its computation entirely on and .
9.2Choice of
Even when the value of is known, choosing a value for is not easy. Briefly, the series for converges slowly when is small, and faster when is larger. However the natural accuracy measure satisfies
and this degrades exponentially with , the exponential constant being .
Hence, if you require meaningful results over a large range of values of , you should choose small, in which case the series for converges slowly; while for a smaller range of values of , you can allow to be larger and obtain faster convergence.
The default value for used by c06lbf is . There is no theoretical justification for this.
9.3Choice of
The simplest advice for choosing is to set . The default value used by the routine is . A more refined choice is to set
where are the singularities of .
10Example
This example computes values of the inverse Laplace transform of the function
The exact answer is
The program first calls c06lbf to compute the coefficients of the Laguerre expansion, and then calls c06lcf to evaluate the expansion at , , , , , .