f08kac computes the minimum norm solution to a real linear least squares problem
The effective rank of
is determined by treating as zero those singular values which are less than
rcond times the largest singular value.
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999)
LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
https://www.netlib.org/lapack/lug
-
1:
– Nag_OrderType
Input
-
On entry: the
order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
. See
Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint:
or .
-
2:
– Integer
Input
-
On entry: , the number of rows of the matrix .
Constraint:
.
-
3:
– Integer
Input
-
On entry: , the number of columns of the matrix .
Constraint:
.
-
4:
– Integer
Input
-
On entry: , the number of right-hand sides, i.e., the number of columns of the matrices and .
Constraint:
.
-
5:
– double
Input/Output
-
Note: the dimension,
dim, of the array
a
must be at least
- when
;
- when
.
The
th element of the matrix
is stored in
- when ;
- when .
On entry: the matrix .
On exit: the first rows of are overwritten with its right singular vectors, stored row-wise.
-
6:
– Integer
Input
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
a.
Constraints:
- if ,
;
- if , .
-
7:
– double
Input/Output
-
Note: the dimension,
dim, of the array
b
must be at least
- when
;
- when
.
The
th element of the matrix
is stored in
- when ;
- when .
On entry: the right-hand side matrix .
On exit:
b is overwritten by the
solution matrix
. If
and
, the residual sum of squares for the solution in the
th column is given by the sum of squares of elements
in that column.
-
8:
– Integer
Input
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
b.
Constraints:
- if ,
;
- if , .
-
9:
– double
Output
-
Note: the dimension,
dim, of the array
s
must be at least
.
On exit: the singular values of in decreasing order.
-
10:
– double
Input
-
On entry: used to determine the effective rank of . Singular values are treated as zero. If , machine precision is used instead.
-
11:
– Integer *
Output
-
On exit: the effective rank of , i.e., the number of singular values which are greater than .
-
12:
– NagError *
Input/Output
-
The NAG error argument (see
Section 7 in the Introduction to the NAG Library CL Interface).
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
See
Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_CONVERGENCE
-
The algorithm for computing the SVD failed to converge; off-diagonal elements of an intermediate bidiagonal form did not converge to zero.
- NE_INT
-
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
- NE_INT_2
-
On entry, and .
Constraint: .
On entry, and .
Constraint: .
On entry, and .
Constraint: .
- NE_INT_3
-
On entry, , and .
Constraint: .
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
See
Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
- NE_NO_LICENCE
-
Your licence key may have expired or may not have been installed correctly.
See
Section 8 in the Introduction to the NAG Library CL Interface for further information.
Background information to multithreading can be found in the
Multithreading documentation.
Please consult the
X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The complex analogue of this function is
f08knc.
This example solves the linear least squares problem
for the solution,
, of minimum norm, where